A review is given on the basic concepts and fundamental framework of the theory of elasticity for quasi-crystalline materials, including some 1D, 2D, and 3D quasi-crystals. The elasticity of quasi-crystals embodies some new concepts, field variables, and equations. It is much more complicated and beyond the scope of classical elasticity which holds only for conventional structural materials, including crystalline materials. Hence, some well-developed methods in classical elasticity cannot be directly applied to solve the problems of elasticity of quasi-crystalline materials. But the ideas of the classical theory of elasticity provide beneficial insight to treat this new subject. A decomposition and superposition procedure is suggested to simplify the elasticity problems of 1D and 2D quasi-crystals. Application of displacement and stress potentials further simplifies the problems. The large number of complicated equations involving elasticity is reduced to a single or a few partial differential equations of higher order by this technique. Also, efforts have been made to simplify the equations for 3D cubic quasi-crystals to a single partial differential equation of higher order. Simplification of the basic equations provides the possibility to solve boundary value or initial-boundary value problems of elasticity. For this purpose, some direct and systematic methods of mathematical physics and function theory are developed, and a series of analytic (classical) solutions, mainly for dislocations and cracks in materials, are derived. In addition, attention is drawn to those variational problems and generalized solutions (weak solutions) of boundary value problems and numerical implementation by the finite element method. The above may be seen as a development of the theory and methodology akin to those of classical elasticity. Based on the exact solutions of crack problems with different configurations under different motion states for different quasi-crystal systems, we put forward a framework of fracture mechanics of quasi-crystalline materials. This may be seen as an extension of the development of fracture mechanics for conventional structural materials. Also, some elastodynamic problems for some 1D and 2D quasi-crystals are studied, related results for dislocation and crack dynamics are found, and possible connections with certain thermal properties of quasi-crystalline materials, eg, specific heat and other thermo-dynamic functions, are discussed. There are 75 references cited in this review article.

1.
Shechtman
D
,
Blech
I
,
Gratins
D
, and
Cahn
JW
(
1984
),
Metallic phase with long-range orientational order and no translational symmetry
,
Phys. Rev. Lett.
53
,
1951
1953
.
2.
Ye
HQ
,
Wang
D
, and
Kuo
KH
(
1985
),
Five-fold symmetry in real and reciprocal space
,
Ultramicroscopy
16
,
273
278
.
3.
Zhang
Z
,
Ye
HQ
, and
Kuo
KH
(
1985
),
A new icosahedron phase with m35 symmetry
,
Philos. Mag. A
52
,
L49–L52
L49–L52
.
4.
Levine
D
, and
Steinhardt
PJ
(
1984
),
Quasi-crystals: A new class of ordered structure
,
Phys. Rev. Lett.
53
,
2477
2450
.
5.
Fung
Y
,
Lu
G
, and
Witers
RI
(
1989
),
An incommensurate structure with cubic point group symmetry in rapidly solidified V-Ni-Si alloy
,
J. Phys.: Condens. Matter
1
,
3695
3770
.
6.
Bendesky
L
(
1985
),
Quasicrystal with one-dimensional translational symmetry and a ten-fold rotation axis
,
Phys. Rev. Lett.
55
,
1461
1463
.
7.
Chattopadhyay
K
,
Ranganathan
S
,
Subbanna
GN
, and
Thangaraj
N
(
1985
),
Electron microscopy of quasicrystals in rapidly solidified Al-14%Mn alloys
,
Scr. Metall.
19
,
767
771
.
8.
Fung
KK
,
Yang
CY
,
Zhou
YQ
,
Zhao
JG
,
Zhan
WS
, and
Shen
BG
(
1986
),
Icosahedrally decagonal in rapidly cooled Al-14-at.%-Fe alloy
,
Phys. Rev. Lett.
56
,
2060
2063
.
9.
Urban
K
,
Myer
J
,
Rapp
M
,
Wikens
M
,
Casanady
A
, and
Filder
J
(
1986
),
Studies on aperiodic crystals in Al-Mn and Al-V alloys by means of transmission electron-microscopy
,
J. Phys. Colloq.
47
(
C3
),
465
475
.
10.
Wang
N
,
Chen
H
, and
Kuo
KH
(
1987
),
Two-dimensional quasi-crystal with eight-fold rotational symmetry
,
Phys. Rev. Lett.
59
,
1010
1013
.
11.
Li
XZ
,
Yu
RC
,
Kuo
KH
, and
Hiraga
K
(
1996
),
Two-dimensional quasi-crystal with five-fold rotational symmetry and superlattice
,
Philos. Mag. Lett.
37
,
255
261
.
12.
Merlin
R
,
Bajema
K
,
Clarke
R
,
Juang
FY
, and
Bhattacharya
PK
(
1985
),
Quasiperiodic GaAs-AlAs heterostructures
,
Phys. Rev. Lett.
55
,
1768
1770
.
13.
Hu
A
,
Tien
C
,
Li
XJ
,
Wang
YH
, and
Feng
D
(
1986
),
X-ray diffraction pattern of quasi-periodic (Fibonacci) Nb-Cu superlattice
,
Phys. Lett. A
119
,
313
314
.
14.
Feng
D
,
Hu
A
,
Chen
K
, and
Xiong
S
(
1987
),
Research on quasi-periodic superlattice
,
Mater. Sci. Forum
22–24
,
489
498
.
15.
Teranchi
H
,
Noda
Y
,
Kamigaki
K
,
Matsunaka
S
,
Nakayama
M
,
Kato
H
,
Sano
N
, and
Yamada
Y
(
1988
),
X-ray diffraction patterns of configuration Fibonacci lattice
,
J. Phys. Soc. Jpn.
17
,
2416
2424
.
16.
Chen
KJ
,
Mao
GM
,
Feng
D
,
Yan
Y
,
Du
JF
,
Li
ZF
,
Chen
HH
, and
Fritzsche
H
(
1987
),
Quasiperiodic a-Si: H/a-SiNx:H multiplayer structures
,
J. Non-Cryst. Solids
97
,
341
344
.
17.
Yang
WG
,
Gui
JN
, and
Wang
RH
(
1996
),
Some-new stable one-dimensional quasi-crystals Al65Cu20Fe10Mn5 alloy
,
Philos. Mag. Lett.
74
,
357
366
.
1.
Penrose
H
(
1974
),
The role of arethetics in pure and applied mathematical research
,
Bull Inst Math Appl
,
10
,
266
271
.
2.
(On Penrose tiling, can also refer to
Gandner
M
(
1977
),
Extraordinary non-periodic tiling that enriches the theory of tiles
,
Sci. Am.
236
,
110
119
;
3.
and Senehal M (1994), Quasi-crystals and Geometry, Cambridge Univ Press, Cambridge).
1.
Bak
P
(
1985
),
Symmetry, stability and elastic properties of icosahedron incommensurate crystals
,
Phys. Rev. B
32
,
3764
3772
.
2.
Bak
P
(
1985
),
Phenomenological theory of icosahedron incommensurate (quasiperiodic) order in Mn-Al alloys
,
Phys. Rev. Lett.
54
,
1517
1519
.
3.
Socolar
JES
,
Lubensky
TC
, and
Steinhart
PJ
(
1986
),
Phonons, phasons and dislocations in quasi-crystals
,
Phys. Rev. B
34
,
3345
3360
.
4.
Landau LD, and Lifshitz EM (1958), Statistical Physics, 2nd Edition (English translation), New York, Pergamon Press.
5.
Hu
CZ
,
Yang
WG
,
Wang
RH
, and
Ding
DH
(
1997
),
Symmetry and physical properties of quasicrystals (in Chinese
),
Prog. Phys.
17
,
3345
375
.
6.
Ding
DH
,
Wang
RH
,
Yang
WG
, and
Hu
CZ
(
1998
),
Elasticity, plasticity and dislocations of quasi-crystals (in Chinese
),
Prog. Phys.
18
,
223
260
.
7.
Ding
DH
,
Yang
WG
,
Hu
CZ
, and
Wang
RH
(
1993
),
Generalized elasticity theory of quasi-crystals
,
Phys. Rev. B
48
,
7003
7010
.
8.
Wang
RH
,
Yang
WG
,
Hu
CZ
, and
Ding
DH
(
1997
),
Point and space groups and elastic behaviours of one-dimensional quasi-crystals
,
J. Phys.: Condens. Matter
9
,
2411
2422
.
9.
Hu
CZ
,
Yang
WG
,
Wang
RH
, and
Ding
DH
(
1996
),
Point groups and elastic properties of two-dimensional quasicrystals
,
Acta Crystallogr.
52
,
251
256
.
10.
Fan TY (1999), Mathematical Theory of Elasticity of Quasi-crystals and Its Applications (Chinese), Beijing Institute of Technology Press, Beijing.
11.
Li
XF
, and
Fan
TY
(
1998
),
New method for solving elasticity problems of some planar quasi-crystals and solutions
,
Chin. Phys. Lett.
15
,
278
280
.
12.
Guo
YC
, and
Fan
TY
(
2001
),
A model II Griffith crack in decagonal quasi-crystal
,
Appl. Math. Mech.
22
,
1311
1317
.
13.
Ding
DH
,
Wang
RH
,
Yang
WG
, and
Hu
CZ
(
1995
),
General expressions for the elastic displacement fields induced by dislocations in quasi-crystals
,
J. Phys.: Condens. Matter
7
,
5423
5436
.
14.
De
P
, and
Pelcovits
RA
(
1987
),
Linear elasticity theory of pentagonal quasicrystals
,
Phys. Rev. B
36
,
9304
9307
(Note: The structure was seen as pentagonal quasicrystal by the original authors, but which should be considered as decagonal quasicrystal according to the point of view at present—noted by the citer).
15.
Li
XF
,
Duan
XY
,
Fan
TY
, and
Sun
YF
(
1999
),
Elastic field for a straight dislocation in a decagonal quasi-crystal
,
J. Phys.: Condens. Matter
11
,
703
711
.
16.
Li
XF
,
Fan
TY
, and
Sun
YF
(
1999
),
A decagonal quasi-crystal with a Griffith crack
,
Philos. Mag. A
79
,
1942
1953
.
17.
Li
XF
, and
Fan
TY
(
2002
),
Elastic analysis of a mode-II crack in a decagonal quasi-crystal
,
Chin. Phys.
11
,
266
271
.
18.
Zhou WM (2000), Dislocation, crack and contact problems of two-and three-dimensional quasi-crystals (Chinese), Dissertation, Beijing Institute of Technology, Beijing.
19.
Zhou
WM
, and
Fan
TY
(
2001
),
Plane elasticity and crack problem of octagonal quasi-crystals
,
Chin. Phys.
10
,
277
284
.
20.
Titchmarsh EC (1937), Introduction to the Theory of Fourier Integrals, Clarenden Press, Oxford.
21.
Busbridge
IW
(
1938
),
Dual integral equations
,
Proc. London Math. Soc.
44
,
115
132
.
22.
Mong
XM
,
Tong
PY
, and
Wu
YQ
(
1994
),
Mechanical properties of quasicrystal Al65Cu20Co15 (in Chinese
),
Acta Mech. Sin.
30
,
61
64
.
23.
Muskhelishvili, NI (1956), Some Basic Problems of Mathematical Theory of Elasticity, English translation, by JRMP Radok, Nordhoff, Gloringen.
24.
Liu
GT
, and
Fan
TY
(
2003
),
Complex method of the plane elasticity in 2D quasi-crystal with point group 10 mm ten-fold symmetry and notch problems
,
Sci. China, Ser. E: Technol. Sci.
46
,
326
336
.
25.
Peng
YZ
, and
Fan
TY
(
2000
),
Elastic theory of 1D quasi-periodic stacking of 2D crystals
,
J. Phys.: Condens. Matter
12
,
9381
9388
.
26.
Peng
YZ
, and
Fan
TY
(
2001
),
Crack and indentation problems for one-dimensional hexagonal quasi-crystal
,
Eur. Phys. J. B
21
,
39
44
.
27.
Peng
YZ
, and
Fan
TY
(
2002
),
Perturbation theory of 2D decagonal quasi-crystals
,
Physica B
311
,
324
330
.
28.
Zhou
WM
, and
Fan
TY
(
2000
),
Axisymmetry elasticity problem of cubic quasi-crystal
,
Chin. Phys.
9
,
295
303
.
29.
Zhou
WM
, and
Fan
TY
(
2002
),
Axisymmetric contact problem of cubic quasi-crystalline materials
,
Acta Mechanica Solida Sinica
,
15
,
68
73
.
30.
Peng
YZ
, and
Fan
TY
(
2000
),
Perturbation method solving elastic problems of icosahedral quasicrystals containing a circular crack
,
Chin. Phys.
9
,
762
766
.
31.
Bachteler
J
, and
Trebin
HR
(
1998
),
Elastic Green’s function of icosahedral quasi-crystals
,
Eur. Phys. J. B
4
,
299
306
.
32.
Ricker
M
,
Bachteler
J
, and
Trebin
H-R
(
2001
),
Elastic theory of icosahedral quasi-crystals: application to straight dislocation
,
Eur. Phys. J. B
23
,
351
363
.
33.
Bachteler J (1999), Kontinuumstheorie der Versezungen in ikosaedrische Quasikristallen, Shaker Verlage, Aachen.
34.
Ricker M (2000), Zur Kontinuumstheorie der Versezungen in ikosaedrischen Quasikristallen, Diplomarbeit, Institut fuer Theoretische und Angewandte Physik, Univ Stuttgart.
35.
Lubensky
TC
,
Ramaswamy
S
, and
Toner
J
(
1985
),
Hydrodynamics of icosahedral quasi-crystals
,
Phys. Rev. B
32
,
7444
7452
.
36.
Trebin
H-R
,
Mikulla
R
, and
Roth
J
(
1993
),
Motion of dislocations in two-dimensional quasi-crystals
,
J Noncrystalline Solids
,
153–154
,
272
276
.
37.
Fan
TY
(
1999
),
A study on specific heat of one-dimensional hexagonal quasicrystal
,
J. Phys.: Condens. Matter
11
,
L513–L517
L513–L517
.
38.
Fan
TY
,
Li
XF
, and
Sun
YF
(
1999
),
A moving screw dislocation in one-dimensional quasicrystal
,
Acta Phys. Sin. (Overseas Ed.)
8
,
288
295
.
39.
Eshelby
JD
(
1949
),
Uniformly moving dislocation
,
Proc. Phys. Soc., London, Sect. A
62
,
407
414
.
40.
Franck
FC
(
1949
),
On the equation of motion crystal dislocation
,
Proc. Phys. Soc., London, Sect. A
62
,
131
134
.
41.
Yoffe
EH
(
1950
),
Moving Griffith crack
,
Philos. Mag.
42
,
739
750
.
42.
Fan
TY
, and
Mai
Y-W
(
2003
),
Partition function and state equation of the point group 12 mm two-dimensional dodecagonal quasicrystal
,
Eur. Phys. J. B
31
,
25
27
.
43.
Debye
P
(
1912
),
Die Eigentuemlichkeit der specifischen Waerme bei tiefen Temperaturen
,
Arch de Gene’ve
,
33
,
256
258
.
44.
Fan TY, and Mai Y-W (2003), Specific heat of point group 10 mm two-dimensional quasi-crystal, Eur. Phys. J. B (submitted).
45.
Bianchi
AD
,
Bommeli
P
,
Felder
E
,
Kenzelmann
M
,
Chernikov
MA
,
Degiorgi
L
,
Ott
HR
, and
Edagawa
K
(
1998
),
Low-temperature thermal and optical properties of single grained decagonal Al-Ni-Co quasicrystal
,
Phys. Rev. B
58
,
3046
305
.
46.
Chernikov
MA
,
Ott
HR
,
Bianchi
A
,
Migliori
A
, and
Darling
TW
(
1998
),
Elastic moduli of a single quasicrystal of decagonal Al-Ni-Co: evidence for transverse elastic isotropy
,
Phys. Rev. Lett.
80
,
321
324
.
47.
Jeong
HC
, and
Steinhardt
PJ
(
1993
),
Finite-temperature elasticity phase transition in decagonal quasicrystals
,
Phys. Rev. B
48
,
9394
9403
.
48.
Fan TY (2001), Phenomenological theory of lattice dynamics of quasi-crystals and its applications, GAMM Jahrestagung 2001, Zuerich, Feb. 12–15.
49.
Rosenfeld
R
,
Feurbacher
M
,
Baufeld
B
,
Bartsch
M
,
Wollgartten
M
,
Hanke
G
,
Beyss
M
, and
Messerschmidt
U
(
1995
),
Study of plastically deformed icosahedral Al-Pd-Mn single quasi-crystals by transmission electron microscopy
,
Philos. Mag. Lett.
72
,
375
384
.
50.
Bartsch
M
,
Geyer
B
,
Haeussler
D
,
Feuerbacher
M
,
Urban
K
, and
Messesrschmidt
U
(
2000
),
Plastic properties of icosahedral Al-Pd-Mn single quasicrystals
,
Mater. Sci. Eng.
294–296
,
761
764
.
51.
Wollgarten
M
,
Bartsch
M
,
Messerschmidt
U
,
Feuerbach
M
,
Rosenffeld
R
,
Beyss
M
, and
Urban
K
(
1995
),
In-situ observation of dislocation motion in icosahedral Al-Pd-Mn single quasi-crystals
,
Philos. Mag. Lett.
71
,
99
105
.
52.
Wang RH (1996), Micro-mechanism of plasticity of quasi-crystals (in Chinese), Proc. Annual Conf of Hubei/Wuhan Phys Soc, 56–60.
53.
Eshelby JD (1956), The continuum theory of dislocations in crystals, Solid-State Physics, 3 F Seitz et al. (ed), Academic Press, New York.
54.
Rice JR (1967), Brown Univ ARPA SD-86 Report E39.
55.
Rice
JR
(
1968
),
A path independent integral and the approximate analysis of strain concentration by notches and cracks
,
ASME J. Appl. Mech.
35
,
379
386
.
56.
Wu XF (1999), Mathematical and numerical simulation of elasticity of quasi-crystals (in Chinese) Dissertation, Beijing Institute of Technology, Beijing.
57.
Oden JT, and Reddy JN (1976), An Introduction to the Mathematical Theory of Finite Element, Springer-Verlag, Berlin.
You do not currently have access to this content.