Some fundamental issues in the formulation of constitutive theories of material response based on the multiplicative decomposition of the deformation gradient are reviewed, with focus on finite deformation thermoelasticity, elastoplasticity, and biomechanics. The constitutive theory of isotropic thermoelasticity is first considered. The stress response and the entropy expression are derived in the case of quadratic dependence of the elastic strain energy on the finite elastic strain. Basic kinematic and kinetic aspects of the phenomenological and single crystal elastoplasticity within the framework of the multiplicative decomposition are presented. Attention is given to additive decompositions of the stress and strain rates into their elastic and plastic parts. The constitutive analysis of the stress-modulated growth of pseudo-elastic soft tissues is then presented. The elastic and growth parts of the deformation gradient and the rate of deformation tensor are defined and used to construct the corresponding rate-type biomechanic theory. The structure of the evolution equation for growth-induced stretch ratio is discussed. There are 112 references cited in this review article.

1.
Eckart
C
(
1948
),
The thermodynamics of irreversible processes, IV: The theory of elasticity and anelasticity
,
Phys. Rev.
73
,
373
380
.
2.
Kro¨ner
E
(
1960
),
Allgemeine Kontinuumstheorie der Versetzungen und Eigensspannungen
,
Arch. Ration. Mech. Anal.
4
,
273
334
.
3.
Sedov LI (1966), Foundations of the Non-Linear Mechanics of Continua, Pergamon Press, Oxford.
4.
Stojanovic´
R
,
Djuric´
S
, and
Vujosˇevic´
L
(
1964
),
On finite thermal deformations
,
Arch. Mech. Stosow.
16
,
103
108
.
5.
Lee
EH
(
1969
),
Elastic-plastic deformation at finite strains
,
ASME J. Appl. Mech.
36
,
1
6
.
6.
Asaro
RJ
and
Rice
JR
(
1977
),
Strain localization in ductile single crystals
,
J. Mech. Phys. Solids
25
,
309
338
.
7.
Hill
R
and
Havner
KS
(
1982
),
Perspectives in the mechanics of elastoplastic crystals
,
J. Mech. Phys. Solids
30
,
5
22
.
8.
Asaro
RJ
(
1983
),
Crystal plasticity
,
ASME J. Appl. Mech.
50
,
921
934
.
9.
Asaro
RJ
(
1983
),
Micromechanics of crystals and polycrystals
,
Adv. Appl. Mech.
23
,
1
115
.
10.
Havner KS (1992), Finite Plastic Deformation of Crystalline Solids, Cambridge Univ Press, Cambridge.
11.
Rodrigez
EK
,
Hoger
A
, and
McCulloch
AD
(
1994
),
Stress-dependent finite growth in soft elastic tissues
,
J. Biomech.
27
,
455
467
.
12.
Taber
LA
and
Eggers
DW
(
1996
),
Theoretical study of stress-modulated growth in the aorta
,
J. Theor. Biol.
180
,
343
357
.
13.
Chen
Y-C
and
Hoger
A
(
2000
),
Constitutive functions of elastic materials in finite growth and deformation
,
J. Elast.
59
,
175
193
.
14.
Klisch
SM
and
Van Dyke
J
(
2001
),
A theory of volumetric growth for compressible elastic biological materials
,
Math. Mech. Solids
6
,
551
575
.
15.
Lubarda
VA
and
Hoger
A
(
2002
),
On the mechanics of solids with a growing mass
,
Int. J. Solids Struct.
39
,
4627
4664
.
16.
Stojanovic´
R
,
Vujosˇevic´
L
, and
Blagojevic´
D
(
1970
),
Couple stresses in thermoelasticity
,
Rev. Roum. Sci. Techn.-Me´c. Appl.
15
,
517
537
.
17.
Miehe
C
(
1995
),
Entropic thermoelasticity at finite strains. Aspects of the formulation and numerical implementation
,
Comput. Methods Appl. Mech. Eng.
120
,
243
269
.
18.
Holzapfel
GA
and
Simo
JC
(
1996
),
Entropy elasticity of isotropic rubber-like solids at finite strains
,
Comput. Methods Appl. Mech. Eng.
132
,
17
44
.
19.
Imam
A
and
Johnson
GC
(
1998
),
Decomposition of deformation gradient in thermoelasticity
,
ASME J. Appl. Mech.
65
,
362
366
.
20.
Vujosˇevic´
L
and
Lubarda
VA
(
2002
),
Finite-strain thermoelasticity based on multiplicative decomposition of deformation gradient
,
Theor Appl. Mech.
28–29
,
379
399
.
21.
Backman
ME
(
1964
),
From the relation between stress and finite elastic and plastic strains under impulsive loading
,
J. Appl. Phys.
35
,
2524
2533
.
22.
Lee
EH
and
Liu
DT
(
1967
),
Finite-strain elastic-plastic theory particularly for plane wave analysis
,
J. Appl. Phys.
38
,
19
27
.
23.
Fox
N
(
1968
),
On the continuum theories of dislocations and plasticity
,
Q. J. Mech. Appl. Math.
21
,
67
75
.
24.
Willis
JR
(
1969
),
Some constitutive equations applicable to problems of large dynamic plastic deformation
,
J. Mech. Phys. Solids
17
,
359
369
.
25.
Mandel J (1971), Plasticite´ classique et viscoplasticite´, Courses and Lectures, No 97, Int Center for Mechanical Sciences, Udine, Springer, New York.
26.
Mandel
J
(
1973
),
Equations constitutives et directeurs dans les milieux plastiques et viscoplastiques
,
Int. J. Solids Struct.
9
,
725
740
.
27.
Kro¨ner E and Teodosiu C (1973), Lattice defect approach to plasticity and viscoplasticity, Problems of Plasticity, A Sawczuk (ed), Noordhoff, Leyden, 45–88.
28.
Freund
LB
(
1970
),
Constitutive equations for elastic-plastic materials at finite strain
,
Int. J. Solids Struct.
6
,
1193
1209
.
29.
Sidoroff
F
(
1975
),
On the formulation of plasticity and viscoplasticity with internal variables
,
Arch. Mech.
27
,
807
819
.
30.
Kleiber
M
(
1975
),
Kinematics of deformation processes in materials subjected to finite elastic-plastic strains
,
Int. J. Eng. Sci.
13
,
513
525
.
31.
Nemat-Nasser
S
(
1979
),
Decomposition of strain measures and their rates in finite deformation elastoplasticity
,
Int. J. Solids Struct.
15
,
155
166
.
32.
Nemat-Nasser
S
(
1982
),
On finite deformation elasto-plasticity
,
Int. J. Solids Struct.
18
,
857
872
.
33.
Lubarda
VA
and
Lee
EH
(
1981
),
A correct definition of elastic and plastic deformation and its computational significance
,
ASME J. Appl. Mech.
48
,
35
40
.
34.
Johnson
GC
and
Bammann
DJ
(
1984
),
A discussion of stress rates in finite deformation problems
,
Int. J. Solids Struct.
20
,
725
737
.
35.
Simo
JC
and
Ortiz
M
(
1985
),
A unified approach to finite deformation elasto-plastic analysis based on the use of hyperelastic constitutive equations
,
Comput. Methods Appl. Mech. Eng.
49
,
221
245
.
36.
Needleman
A
(
1985
),
On finite element formulations for large elastic-plastic deformations
,
Comput. Struct.
20
,
247
257
.
37.
Dashner
PA
(
1986
),
Invariance considerations in large strain elasto-plasticity
,
ASME J. Appl. Mech.
53
,
55
60
.
38.
Dafalias
YF
(
1987
),
Issues in constitutive formulation at large elastoplastic deformation, Part I: Kinematics
,
Acta Mech.
69
,
119
138
.
39.
Dafalias
YF
(
1988
),
Issues in constitutive formulation at large elastoplastic deformation, Part II: Kinetics
,
Acta Mech.
73
,
121
146
.
40.
Agah-Tehrani
A
,
Lee
EH
,
Mallett
RL
, and
Onat
ET
(
1987
),
The theory of elastic-plastic deformation at finite strain with induced anisotropy modeled as combined isotropic-kinemetic hardening
,
J. Mech. Phys. Solids
35
,
519
539
.
41.
Van der Giessen
E
(
1989
),
Continuum models of large deformation plasticity, Parts I and II
,
Eur. J. Mech. A/Solids
8
,
15
34
and 89–108.
42.
Moran
B
,
Ortiz
M
, and
Shih
CF
(
1990
),
Formulation of implicit finite element methods for multiplicative finite deformation plasticity
,
Int. J. Numer. Methods Eng.
29
,
483
514
.
43.
Naghdi
PM
(
1990
),
A critical review of the state of finite plasticity
,
Z. Angew. Math. Phys.
41
,
315
394
.
44.
Aravas
N
(
1992
),
Finite elastoplastic transformations of transversely isotropic metals
,
Int. J. Solids Struct.
29
,
2137
2157
.
45.
Lubarda
VA
and
Shih
CF
(
1994
),
Plastic spin and related issues in phenomenological plasticity
,
ASME J. Appl. Mech.
61
,
524
529
.
46.
Xiao
H
,
Bruhns
OT
, and
Meyers
A
(
2000
),
A consistent finite elastoplasticity theory combining additive and multiplicative decomposition of the stretching and the deformation gradient
,
Int. J. Plast.
16
,
143
177
.
47.
Lubarda
VA
and
Benson
DJ
(
2001
),
On the partitioning of the rate of deformation gradient in phenomenological plasticity
,
Int. J. Solids Struct.
38
,
6805
6817
.
48.
Aravas
N
and
Aifantis
EC
(
1991
),
On the geometry of slip and spin in finite plasticity deformation
,
Int. J. Plast.
7
,
141
160
.
49.
Bassani
JL
(
1993
),
Plastic flow of crystals
,
Adv. Appl. Mech.
30
,
191
258
.
50.
Lubarda
VA
(
1999
),
On the partition of rate of deformation in crystal plasticity
,
Int. J. Plast.
15
,
721
736
.
51.
Gurtin
ME
(
2000
),
On the plasticity of single crystals: free energy, microforces, plastic-strain gradients
,
J. Mech. Phys. Solids
48
,
989
1036
.
52.
Taber
LA
and
Perucchio
R
(
2000
),
Modeling heart development
,
J. Elast.
61
,
165
197
.
53.
Hoger A, Van Dyke TJ, and Lubarda VA (2002), Symmetrization of the growth deformation and velocity gradients in residually stressed biomaterials, Z. Angew. Math. Phys. (submitted).
54.
Stojanovic´ R (1972), Nonlinear thermoelasticity, CISM Lecture Notes, Udine.
55.
Mic´unovic´
M
(
1974
),
A geometrical treatment of thermoelasticity of simple inhomogeneous bodies: I and II
,
Bull. Acad. Polon. Sci., Ser. Sci. Techn.
22
,
579
588
, and 633–641.
56.
Lu
SCH
and
Pister
KS
(
1975
),
Decomposition of deformation and representation of the free energy function for isotropic thermoelastic solids
,
Int. J. Solids Struct.
11
,
927
934
.
57.
Lubarda VA (2002), Multiplicative decomposition of deformation gradient in continuum mechanics: thermoelasticity, elastoplasticity and biomechanics, Proc of Montenegrin Acad of Sci and Arts 14, 53–86.
58.
Carlson DE (1972), Linear thermoelasticity, Handbuch der Physik, Band VIa/2, S Flu¨gge (ed), Springer-Verlag, Berlin, 297–346.
59.
Nowacki W (1986), Thermoelasticity (2nd ed), Pergamon Press, Oxford; PWN—Polish Sci Publ, Warszawa.
60.
Green
AE
and
Naghdi
PM
(
1971
),
Some remarks on elastic-plastic deformation at finite strain
,
Int. J. Eng. Sci.
9
,
1219
1229
.
61.
Casey
J
and
Naghdi
PM
(
1980
),
Remarks on the use of the decomposition F=FeFp in plasticity
,
ASME J. Appl. Mech.
47
,
672
675
.
62.
Kleiber M and Raniecki B (1985), Elastic-plastic materials at finite strains, Plasticity Today, A Sawczuk and G Bianchi (eds), Elsevier Applied Science, UK, 3–46.
63.
Casey
J
(
1987
), Discussion of “
Invariance considerations in large strain elasto-plasticity
,”
ASME J. Appl. Mech.
54
,
247
248
.
64.
Lubarda
VA
(
1991
),
Constitutive analysis of large elasto-plastic deformation based on the multiplicative decomposition of deformation gradient
,
Int. J. Solids Struct.
27
,
885
895
.
65.
Lubarda VA (2002), Elastoplasticity Theory, CRC Press, Boca Raton FL.
66.
Simo
JC
and
Ju
JW
(
1987
),
Strain- and stress-based continuum damage models, I: Formulation
,
Int. J. Solids Struct.
23
,
821
840
.
67.
Lubarda
VA
(
1994
),
An analysis of large-strain damage elastoplasticity
,
Int. J. Solids Struct.
31
,
2951
2964
.
68.
Lubarda
VA
and
Krajcinovic
D
(
1995
),
Some fundamental issues in rate theory of damage-elastoplasticity
,
Int. J. Plast.
11
,
763
797
.
69.
Ilyushin
AA
(
1961
),
On the postulate of plasticity
,
Prikl. Mat. Mekh.
25
,
503
507
.
70.
Hill
R
and
Rice
JR
(
1973
),
Elastic potentials and the structure of inelastic constitutive laws
,
SIAM J. Appl. Math.
25
,
448
461
.
71.
Hill
R
(
1978
),
Aspects of invariance in solid mechanics
,
Adv. Appl. Mech.
18
,
1
75
.
72.
Khan AS and Huang S (1995), Continuum Theory of Plasticity, John Wiley and Sons, New York.
73.
Simo JC and Hughes TJR (1998), Computational Plasticity, Springer-Verlag, New York.
74.
Casey
J
and
Naghdi
PM
(
1983
),
On the nonequivalence of the stress and strain space formulations of plasticity theory
,
ASME J. Appl. Mech.
50
,
350
354
.
75.
Lubarda
VA
(
1994
),
Elastoplastic constitutive analysis with the yield surface in strain space
,
J. Mech. Phys. Solids
42
,
931
952
.
76.
Lubarda VA (2001), Continuum Mechanics of Materials, Encyclopedia of Materials: Science and Technology, Elsevier, Amsterdam, 5295–5307.
77.
Kratochvil
H
(
1973
),
On a finite strain theory of elastic-inelastic materials
,
Acta Mech.
16
,
127
142
.
78.
Lubarda
VA
(
1999
),
Duality in constitutive formulation of finite-strain elastoplasticity based on F=FeFp and F=FpFe decompositions
,
Int. J. Plast.
15
,
1277
1290
.
79.
Lubarda
VA
(
1991
),
Some aspects of elasto-plastic constitutive analysis of elastically anisotropic materials
,
Int. J. Plast.
7
,
625
636
.
80.
Steinmann
P
,
Miehe
C
, and
Stein
E
(
1996
),
Fast transient dynamic plane stress analysis of orthotropic Hill-type solids at finite elastoplastic strain
,
Int. J. Solids Struct.
33
,
1543
1562
.
81.
Lee
EH
,
Mallett
RL
, and
Wertheimer
TB
(
1983
),
Stress analysis for anisotropic hardening in finite-deformation plasticity
,
ASME J. Appl. Mech.
50
,
554
560
.
82.
Loret
B
(
1983
),
On the effects of plastic rotation in the finite deformation of anisotropic elastoplastic materials
,
Mech. Mater.
2
,
287
304
.
83.
Dafalias
YF
(
1983
),
Corotational rates for kinematic hardening at large plastic deformations
,
ASME J. Appl. Mech.
50
,
561
565
.
84.
Dafalias
YF
(
1985
),
The plastic spin
,
ASME J. Appl. Mech.
52
,
865
871
.
85.
Zbib
HM
and
Aifantis
EC
(
1988
),
On the concept of relative and plastic spins and its implications to large deformation theories, Part II: Anisotropic hardening
,
Acta Mech.
75
,
35
56
.
86.
Van der Giessen
E
(
1991
),
Micromechanical and thermodynamic aspects of the plastic spin
,
Int. J. Plast.
7
,
365
386
.
87.
Nemat-Nasser
S
(
1992
),
Phenomenological theories of elastoplasticity and strain localization at high strain rates
,
Appl. Mech. Rev.
45
,
S19–S45
S19–S45
.
88.
Dafalias
YF
(
1998
),
Plastic spin: Necessity or redundancy
,
Int. J. Plast.
14
,
909
931
.
89.
Taylor
GI
(
1938
),
Plastic strain in metals
,
J. Inst. Met.
62
,
307
324
.
90.
Hill
R
and
Rice
JR
(
1972
),
Constitutive analysis of elastic-plastic crystals at arbitrary strain
,
J. Mech. Phys. Solids
20
,
401
413
.
91.
Mandel J (1974), Thermodynamics and plasticity, Foundations of Continuum Thermodynamics, JJD Domingos, MNR Nina and JH Whitelaw (eds), McMillan Publishers, London, 283–311.
92.
Lubarda
VA
(
1999
),
On the partition of the rate of deformation in crystal plasticity
,
Int. J. Plast.
15
,
721
736
.
93.
Hsu
F
(
1968
),
The influences of mechanical loads on the form of a growing elastic body
,
Biomechanics
1
,
303
311
.
94.
Cowin
SC
and
Hegedus
DH
(
1976
),
Bone remodeling I: Theory of adaptive elasticity
,
J. Elast.
6
,
313
326
.
95.
Skalak
R
,
Dasgupta
G
,
Moss
M
,
Otten
E
,
Dullemeijer
P
, and
Vilmann
H
(
1982
),
Analytical description of growth
,
J. Theor. Biol.
94
,
555
577
.
96.
Taber
LA
(
1995
),
Biomechanics of growth, remodeling, and morphogenesis
,
Appl. Mech. Rev.
48
(
8
),
487
545
.
97.
Humphrey
JD
(
1995
),
Mechanics of the arterial wall: Review and directions
,
Crit. Rev. Biomed. Eng.
23
,
1
162
.
98.
Holzapfel
GA
,
Gasser
TC
, and
Ogden
RW
(
2000
),
A new constitutive framework for arterial wall mechanics and a comparative study of material models
,
J. Elast.
61
,
1
48
.
99.
Sacks
MS
(
2000
),
Biaxial mechanical evaluation of planar biological materials
,
J. Elast.
61
,
199
246
.
100.
Fung
Y-C
(
1973
),
Biorheology of soft tissues
,
Biorheology
9
,
139
155
.
101.
Fung
Y-C
(
1995
),
Stress, strain, growth, and remodeling of living organisms
,
Z. Angew. Math. Phys.
46
,
S469–S482
S469–S482
.
102.
Humphrey
JD
(
2003
),
Continuum thermomechanics and the clinical treatment of disease and injury
,
Appl. Mech. Rev.
56
,
231
260
.
103.
Fung Y-C (1990), Biomechanics: Motion, Flow, Stress, and Growth, Springer, New York.
104.
Liu
SQ
and
Fung
Y-C
(
1988
),
Zero-stress states of arteries
,
ASME J. Biomech. Eng.
110
,
82
84
.
105.
Liu
SQ
and
Fung
Y-C
(
1989
),
Relationship between hypertension, hypertrophy, and opening angle of zero-stress state of arteries following aortic constriction
,
ASME J. Biomech. Eng.
111
,
325
335
.
106.
Truesdell C and Noll N (1965), The nonlinear field theories of mechanics, Handbuch der Physik, Band III/3, S Flu¨gge (ed), Springer-Verlag, Berlin.
107.
Bruhns
OT
,
Xiao
H
, and
Meyers
A
(
2001
),
A self-consistent Eulerian rate type model for finite deformation elastoplasticity with isotropic damage
,
Int. J. Solids Struct.
38
,
657
683
.
108.
Boyce
MC
,
Parks
DM
, and
Argon
AS
(
1988
),
Large inelastic deformation of glassy polymers, Part I: Rate-dependent constitutive model
,
Mech. Mater.
7
,
15
33
.
109.
Boyce
MC
,
Weber
GG
, and
Parks
DM
(
1989
),
On the kinematics of finite strain plasticity
,
J. Mech. Phys. Solids
37
,
647
665
.
110.
Arruda
EM
and
Boyce
MC
(
1993
),
A three-dimensional constitutive model for the large stretch behavior of rubber elastic materials
,
J. Mech. Phys. Solids
41
,
389
412
.
111.
Wu
PD
and
Van der Giessen
E
(
1993
),
On improved network models for rubber elasticity and their applications to orientation hardening in glassy polymers
,
J. Mech. Phys. Solids
41
,
427
456
.
112.
Lion
A
(
1997
),
A physically based method to represent the thermomechanical behavior of elastomers
,
Acta Mech.
123
,
1
25
.
You do not currently have access to this content.