Abstract

Elastomers exhibit a stiffer mechanical response and anisotropy when stretched in a specific direction, which has led to numerous applications in biomechanics, surgery, tactile sensors, and more. This study introduces a comprehensive, experimentally validated analytical framework to investigate the effects of prestretch on the planar contact between a rigid indenter and a hyperelastic substrate. By linearizing the equilibrium equation for incremental deformation, we adapt the superposition principle to reveal how prestretch modifies the mechanical response, which is reflected in a simple prefactor in the surface Green’s function. This modification facilitates precise calculation of contact mechanics properties, including indentation pressure distributions and displacement profiles, which are essential for assessing both global and local properties, e.g., force–displacement responses. We further support our theoretical findings with numerical simulations and validate them through cylindrical indentation tests across various stretch ratios. These outcomes emphasize the feasibility of using our first-order approximation theory in practical settings, especially for the mechanical characterization of materials involving residual stress analysis and the development of advanced, model-based adaptive tactile sensors.

References

1.
Constantinides
,
G.
,
Kalcioglu
,
Z. I.
,
McFarland
,
M.
,
Smith
,
J. F.
, and
Van Vliet
,
K. J.
,
2008
, “
Probing Mechanical Properties of Fully Hydrated Gels and Biological Tissues
,”
J. Biomech.
,
41
(
15
), pp.
3285
3289
.
2.
Hu
,
Y.
,
You
,
J.-O.
,
Auguste
,
D. T.
,
Suo
,
Z.
, and
Vlassak
,
J. J.
,
2012
, “
Indentation: A Simple, Nondestructive Method for Characterizing the Mechanical and Transport Properties of PH-Sensitive Hydrogels
,”
J. Mater. Res.
,
27
(
1
), pp.
152
160
.
3.
Ebenstein
,
D. M.
, and
Pruitt
,
L. A.
,
2006
, “
Nanoindentation of Biological Materials
,”
Nano Today
,
1
(
3
), pp.
26
33
.
4.
Huang
,
Y.-P.
,
Zheng
,
Y.-P.
, and
Leung
,
S.-F.
,
2005
, “
Quasi-Linear Viscoelastic Properties of Fibrotic Neck Tissues Obtained From Ultrasound Indentation Tests In Vivo
,”
Clin. Biomech.
,
20
(
2
), pp.
145
154
.
5.
Silver-Thorn
,
M. B.
,
1999
, “
In Vivo Indentation of Lower Extremity Limb Soft Tissues
,”
IEEE Trans. Rehabil. Eng.
,
7
(
3
), pp.
268
277
.
6.
Guess
,
T. M.
,
Liu
,
H.
,
Bhashyam
,
S.
, and
Thiagarajan
,
G.
,
2013
, “
A Multibody Knee Model With Discrete Cartilage Prediction of Tibio-Femoral Contact Mechanics
,”
Comput. Methods Biomech. Biomed. Eng.
,
16
(
3
), pp.
256
270
.
7.
Farshidfar
,
S. S.
,
Cadman
,
J.
,
Neri
,
T.
,
Parker
,
D.
,
Appleyard
,
R.
, and
Dabirrahmani
,
D.
,
2023
, “
Towards a Validated Musculoskeletal Knee Model to Estimate Tibiofemoral Kinematics and Ligament Strains: Comparison of Different Anterolateral Augmentation Procedures Combined With Isolated ACL Reconstructions
,”
BioMed. Eng. OnLine
,
22
(
31
), p.
31
.
8.
Pandy
,
M. G.
,
Sasaki
,
K.
, and
Kim
,
S.
,
1997
, “
A Three-Dimensional Musculoskeletal Model of the Human Knee Joint. Part 1: Theoretical Construction
,”
Comput. Methods Biomech. Biomed. Eng.
,
1
(
2
), pp.
87
108
.
9.
Yuan
,
W.
,
Dong
,
S.
, and
Adelson
,
E. H.
,
2017
, “
GelSight: High-Resolution Robot Tactile Sensors for Estimating Geometry and Force
,”
Sensors
,
17
(
12
).
10.
Donlon
,
E.
,
Dong
,
S.
,
Liu
,
M.
,
Li
,
J.
,
Adelson
,
E.
, and
Rodriguez
,
A.
,
2018
, “
GelSlim: A High-Resolution, Compact, Robust, and Calibrated Tactile-sensing Finger
,”
IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
,
Madrid, Spain
,
Oct. 1–5
.
11.
Wang
,
S.
,
She
,
Y.
,
Romero
,
B.
, and
Adelson
,
E.
,
2021
, “
GelSight Wedge: Measuring High-Resolution 3D Contact Geometry With a Compact Robot Finger
,”
IEEE International Conference on Robotics and Automation (ICRA)
,
Xi'an, China
,
May 30–June 5
.
12.
Lambeta
,
M.
,
Chou
,
P.-W.
,
Tian
,
S.
,
Yang
,
B.
,
Maloon
,
B.
,
Most
,
V. R.
,
Stroud
,
D.
,
Santos
,
R.
,
Byagowi
,
A.
,
Kammerer
,
G.
,
Jayaraman
,
D.
, and
Calandra
,
R.
,
2020
, “
DIGIT: A Novel Design for a Low-Cost Compact High-Resolution Tactile Sensor With Application to In-Hand Manipulation
,”
IEEE Robot. Autom. Lett.
,
5
(
3
), pp.
3838
3845
.
13.
Jin
,
Z. M.
,
Pickard
,
J. E.
,
Forster
,
H.
,
Ingham
,
E.
, and
Fisher
,
J.
,
2000
, “
Frictional Behaviour of Bovine Articular Cartilage
,”
Biorheology
,
37
(
1–2
), pp.
57
63
. PMID: 10912178
14.
Feng
,
Z.-Q.
,
Peyraut
,
F.
, and
Labed
,
N.
,
2003
, “
Solution of Large Deformation Contact Problems With Friction Between Blatz–Ko Hyperelastic Bodies
,”
Int. J. Eng. Sci.
,
41
(
19
), pp.
2213
2225
.
15.
Narang
,
Y.
,
Sundaralingam
,
B.
,
Macklin
,
M.
,
Mousavian
,
A.
, and
Fox
,
D.
,
2021
, “
Sim-to-Real for Robotic Tactile Sensing Via Physics-Based Simulation and Learned Latent Projections
,”
IEEE International Conference on Robotics and Automation (ICRA)
,
Xi'an, China
,
May 30–June 5
, pp.
6444
6451
.
16.
Green
,
A. E.
,
Rivlin
,
R. S.
, and
Shield
,
R. T.
,
1952
, “
General Theory of Small Elastic Deformations Superposed on Finite Elastic Deformations
,”
Proc. R. Soc. Lond. A
,
211
(
1104
), pp.
128
154
.
17.
Dhaliwal
,
R. S.
, and
Singh
,
B. M.
,
1978
, “
The Axisymmetric Boussinesq Problem of an Initially Stressed Neo-hookean Half-Space for a Punch of Arbitrary Profile
,”
Int. J. Eng. Sci.
,
16
(
6
), pp.
379
385
.
18.
Filippova
,
L. M.
,
1978
, “
Three-Dimensional Contact Problem for a Prestressed Elastic Body
,”
J. Appl. Math. Mech.
,
42
(
6
), pp.
1183
1188
.
19.
He
,
L. H.
,
2008
, “
Elastic Interaction Between Force Dipoles on a Stretchable Substrate
,”
J. Mech. Phy. Solid
,
56
(
10
), pp.
2957
2971
.
20.
Zheng
,
Y.
,
Crosby
,
A. J.
, and
Cai
,
S.
,
2017
, “
Indentation of a Stretched Elastomer
,”
J. Mech. Phy. Solid
,
107
, pp.
145
159
.
21.
Frétigny
,
C.
, and
Chateauminois
,
A.
,
2017
, “
Contact of a Spherical Probe With a Stretched Rubber Substrate
,”
Phys. Rev. E
,
96
(
1
), p.
013001
.
22.
Felder
,
E.
, and
Barquins
,
M.
,
1992
, “
Adherence of Natural Rubber Plates Subjected to Biaxial Tensile Strain
,”
J. Phys. D: Appl. Phys.
,
25
(
1A
), pp.
A9
A13
.
23.
Gay
,
C.
,
2000
, “
Does Stretching Affect Adhesion?
,”
Int. J. Adhes. Adhes.
,
20
(
5
), pp.
387
393
.
24.
Long
,
J. M.
,
Wang
,
G. F.
,
Feng
,
X. Q.
, and
Yu
,
S. W.
,
2012
, “
Two-Dimensional Hertzian Contact Problem With Surface Tension
,”
Int. J. Solids Struct.
,
49
(
13
), pp.
1588
1594
.
25.
Liu
,
T.
,
Jagota
,
A.
, and
Hui
,
C.-Y.
,
2015
, “
Adhesive Contact of a Rigid Circular Cylinder to a Soft Elastic Substrate—The Role of Surface Tension, Soft Matter
,”
Soft Matter
,
11
(
19
), pp.
3844
3851
.
26.
Style
,
R. W.
,
Hyland
,
C.
,
Boltyanskiy
,
R.
,
Wettlaufer
,
J. S.
, and
Dufresne
,
E. R.
,
2013
, “
Surface Tension and Contact With Soft Elastic Solids
,”
Nat. Commun.
,
4
(
2728
).
27.
Wang
,
Z.
,
Dong
,
Y.
,
Zheng
,
Y.
,
Wang
,
Y.
,
Li
,
C.
,
Hu
,
Y.
, and
Cai
,
S.
,
2023
, “
Electrowetting of a Soft Elastic Gel
,”
ACS Macro Lett.
,
12
(
6
), pp.
828
834
.
28.
Brock
,
L. M.
,
1999
, “
Sliding Contact With Friction At Arbitrary Constant Speeds on a Pre-Stressed Highly Elastic Half-Space
,”
J. Elast.
,
57
(
2
), pp.
105
132
.
29.
Brock
,
L. M.
,
2001
, “
Rapid Indentation of a Pre-Stressed Hyper-Elastic Half-Space: Comparison of Axially Symmetric and Plane Strain Cases
,”
Int. J. Solids Struct.
,
38
(
32–33
), pp.
5527
5543
.
30.
Shull
,
K. R.
,
Ahn
,
D.
,
Chen
,
W. -L.
,
Flanigan
,
C. M.
, and
Crosby
,
A. J.
,
1998
, “
Axisymmetric Adhesion Tests of Soft Materials
,”
Macromol. Chem. Phys.
,
199
(
4
), pp.
489
511
.
31.
Upadhyay
,
K.
,
Subhash
,
G.
, and
Spearot
,
D.
,
2020
, “
Hyperelastic Constitutive Modeling of Hydrogels Based on Primary Deformation Modes and Validation Under 3D Stress States
,”
Int. J. Eng. Sci.
,
154
, p.
103314
.
32.
Johnson
,
K. L.
,
1985
,
Contact Mechanics
,
Cambridge University Press
,
Cambridge, UK
.
33.
Smith
,
M.
,
2009
,
ABAQUS/Standard User's Manual, Version 6.9
,
Dassault Systèmes Simulia Corp
,
Providence, RI
.
34.
Holzapfel
,
G. A.
,
2000
,
Nonlinear Solid Mechanics: A Continuum Approach for Engineering
,
Wiley
,
Hoboken, NJ
.
35.
Dal
,
H.
,
Açıkgöz
,
K.
, and
Badienia
,
Y.
,
2021
, “
On the Performance of Isotropic Hyperelastic Constitutive Models for Rubber-Like Materials: A State of the Art Review
,”
ASME Appl. Mech. Rev.
,
73
(
2
), p.
020802
.
36.
Mandal
,
B. N.
, and
Chakrabarti
,
A.
,
2011
,
Applied Singular Integral Equations
,
CRC Press
,
Boca Raton, FL
.
37.
Barney
,
C. W.
,
Chen
,
C.
, and
Crosby
,
A. J.
,
2021
, “
Deep Indentation and Puncture of a Rigid Cylinder Inserted Into a Soft Solid
,”
Soft Matter
,
17
(
22
), pp.
5574
5580
.
38.
Evans
,
L. C.
,
2010
,
Partial Differential Equations: Second Edition
,
American Mathematical Society
,
Providence, RI
.
You do not currently have access to this content.