Graphical Abstract Figure
Graphical Abstract Figure
Close modal

Abstract

Recently, the phase-field method has been increasingly used for brittle fractures in soft materials like polymers, elastomers, and biological tissues. When considering finite deformations to account for the highly deformable nature of soft materials, the convergence of the phase-field method becomes challenging, especially in scenarios of unstable crack growth. To overcome these numerical difficulties, several approaches have been introduced, with artificial viscosity being the most widely utilized. This study investigates the energy release rate due to crack propagation in hyperelastic nearly-incompressible materials and compares the phase-field method and a novel gradient-enhanced damage (GED) approach. First, we simulate unstable loading scenarios using the phase-field method, which leads to convergence problems. To address these issues, we introduce artificial viscosity to stabilize the problem and analyze its impact on the energy release rate utilizing a domain J-integral approach giving quantitative measurements during crack propagation. It is observed that the measured energy released rate during crack propagation does not comply with the imposed critical energy release rate, and shows non-monotonic behavior. In the second part of the paper, we introduce a novel stretch-based GED model as an alternative to the phase-field method for modeling crack evolution in elastomers. It is demonstrated that in this method, the energy release rate can be obtained as an output of the simulation rather than as an input which could be useful in the exploration of rate-dependent responses, as one could directly impose chain-level criteria for damage initiation. We show that while this novel approach provides reasonable results for fracture simulations, it still suffers from some numerical issues that strain-based GED formulations are known to be susceptible to.

References

1.
Drury
,
J. L.
, and
Mooney
,
D. J.
,
2003
, “
Hydrogels for Tissue Engineering: Scaffold Design Variables and Applications
,”
Biomaterials
,
24
(
24
), pp.
4337
4351
.
2.
Nonoyama
,
T.
,
Wada
,
S.
,
Kiyama
,
R.
,
Kitamura
,
N.
,
Mredha
,
M. T. I.
,
Zhang
,
X.
,
Kurokawa
,
T.
, et al.,
2016
, “
Double-Network Hydrogels Strongly Bondable to Bones by Spontaneous Osteogenesis Penetration
,”
Adv. Mater.
,
28
(
31
), pp.
6740
6745
.
3.
Mark
,
J. E
,
2003
, “
Elastomers With Multimodal Distributions of Network Chain Lengths
,”
Macromolecular Symposia
,
191
(
1
), pp.
121
130
.
4.
Sun
,
J.-Y.
,
Zhao
,
X.
,
Illeperuma
,
W. R.
,
Chaudhuri
,
O.
,
Oh
,
K. H.
,
Mooney
,
D. J.
,
Vlassak
,
J. J.
, and
Suo
,
Z.
,
2012
, “
Highly Stretchable and Tough Hydrogels
,”
Nature
,
489
(
7414
), pp.
133
136
.
5.
Itskov
,
M.
, and
Knyazeva
,
A.
,
2016
, “
A Rubber Elasticity and Softening Model Based on Chain Length Statistics
,”
Int. J. Solids Struct.
,
80
, pp.
512
519
.
6.
Tehrani
,
M.
, and
Sarvestani
,
A.
,
2017
, “
Effect of Chain Length Distribution on Mechanical Behavior of Polymeric Networks
,”
Eur. Polym. J.
,
87
, pp.
136
146
.
7.
Bai
,
R.
,
Yang
,
Q.
,
Tang
,
J.
,
Morelle
,
X. P.
,
Vlassak
,
J.
, and
Suo
,
Z.
,
2017
, “
Fatigue Fracture of Tough Hydrogels
,”
Extreme Mech. Lett.
,
15
, pp.
91
96
.
8.
Yang
,
C.
,
Yin
,
T.
, and
Suo
,
Z.
,
2019
, “
Polyacrylamide Hydrogels I. Network Imperfection
,”
J. Mech. Phys. Solids
,
131
, pp.
43
55
.
9.
Lin
,
S.
,
Ni
,
J.
,
Zheng
,
D.
, and
Zhao
,
X.
,
2021
, “
Fracture and Fatigue of Ideal Polymer Networks
,”
Extreme Mech. Lett.
,
48
, p.
101399
.
10.
Zhou
,
Y.
,
Hu
,
J.
,
Zhao
,
P.
,
Zhang
,
W.
,
Suo
,
Z.
, and
Lu
,
T.
,
2021
, “
Flaw-Sensitivity of a Tough Hydrogel Under Monotonic and Cyclic Loads
,”
J. Mech. Phys. Solids
,
153
, p.
104483
.
11.
Lei
,
M.
,
Yu
,
K.
,
Lu
,
H.
, and
Qi
,
H. J.
,
2017
, “
Influence of Structural Relaxation on Thermomechanical and Shape Memory Performances of Amorphous Polymers
,”
Polymer
,
109
, pp.
216
228
.
12.
Xiang
,
Y.
,
Zhong
,
D.
,
Wang
,
P.
,
Mao
,
G.
,
Yu
,
H.
, and
Qu
,
S.
,
2018
, “
A General Constitutive Model of Soft Elastomers
,”
J. Mech. Phys. Solids
,
117
, pp.
110
122
.
13.
Chen
,
S.
,
Sun
,
L.
,
Zhou
,
X.
,
Guo
,
Y.
,
Song
,
J.
,
Qian
,
S.
,
Liu
,
Z.
, et al.,
2020
, “
Mechanically and Biologically Skin-Like Elastomers for Bio-integrated Electronics
,”
Nat. Commun.
,
11
(
1
), p.
1107
.
14.
Francfort
,
G. A.
, and
Marigo
,
J.-J.
,
1998
, “
Revisiting Brittle Fracture as an Energy Minimization Problem
,”
J. Mech. Phys. Solids
,
46
(
8
), pp.
1319
1342
.
15.
Bourdin
,
B.
,
Francfort
,
G.
, and
Marigo
,
J.-J.
,
2000
, “
Numerical Experiments in Revisited Brittle Fracture
,”
J. Mech. Phys. Solids
,
48
(
4
), pp.
797
826
.
16.
Khoei
,
A. R.
,
2014
,
Extended Finite Element Method: Theory and Applications
,
John Wiley & Sons
.
17.
Khoei
,
A.
,
Mousavi
,
S.
, and
Hosseini
,
N.
,
2023
, “
Modeling Density-Driven Flow and Solute Transport in Heterogeneous Reservoirs With Micro/Macro Fractures
,”
Adv. Water Resour.
,
182
, p.
104571
.
18.
Khoei
,
A.
,
Saeedmonir
,
S.
,
Hosseini
,
N.
, and
Mousavi
,
S.
,
2023
, “
An X–FEM Technique for Numerical Simulation of Variable-Density Flow in Fractured Porous Media
,”
MethodsX
,
10
, p.
102137
.
19.
Miehe
,
C.
,
Hofacker
,
M.
, and
Welschinger
,
F.
,
2010
, “
A Phase Field Model for Rate-Independent Crack Propagation: Robust Algorithmic Implementation Based on Operator Splits
,”
Comput. Methods Appl. Mech. Eng.
,
199
(
45
), pp.
2765
2778
.
20.
Borden
,
M. J.
,
Verhoosel
,
C. V.
,
Scott
,
M. A.
,
Hughes
,
T. J.
, and
Landis
,
C. M.
,
2012
, “
A Phase-Field Description of Dynamic Brittle Fracture
,”
Comput. Methods Appl. Mech. Eng.
,
217
, pp.
77
95
.
21.
Ambati
,
M.
,
Gerasimov
,
T.
, and
De Lorenzis
,
L.
,
2015
, “
A Review on Phase-Field Models of Brittle Fracture and a New Fast Hybrid Formulation
,”
Comput. Mech.
,
55
(
2
), pp.
383
405
.
22.
Yin
,
B.
, and
Kaliske
,
M.
,
2020
, “
A Ductile Phase-Field Model Based on Degrading the Fracture Toughness: Theory and Implementation at Small Strain
,”
Comput. Methods Appl. Mech. Eng.
,
366
, p.
113068
.
23.
Miehe
,
C.
, and
Schänzel
,
L.-M.
,
2014
, “
Phase Field Modeling of Fracture in Rubbery Polymers. Part I: Finite Elasticity Coupled With Brittle Failure
,”
J. Mech. Phys. Solids
,
65
, pp.
93
113
.
24.
Raina
,
A.
, and
Miehe
,
C.
,
2016
, “
A Phase-Field Model for Fracture in Biological Tissues
,”
Biomech. Model. Mechanobiol.
,
15
(
3
), pp.
479
496
.
25.
Wu
,
J.
,
McAuliffe
,
C.
,
Waisman
,
H.
, and
Deodatis
,
G.
,
2016
, “
Stochastic Analysis of Polymer Composites Rupture at Large Deformations Modeled by a Phase Field Method
,”
Comput. Methods Appl. Mech. Eng.
,
312
, pp.
596
634
.
26.
Tang
,
S.
,
Zhang
,
G.
,
Guo
,
T. F.
,
Guo
,
X.
, and
Liu
,
W. K.
,
2019
, “
Phase Field Modeling of Fracture in Nonlinearly Elastic Solids Via Energy Decomposition
,”
Comput. Methods Appl. Mech. Eng.
,
347
, pp.
477
494
.
27.
Mandal
,
T. K.
,
Nguyen
,
V. P.
, and
Wu
,
J.-Y.
,
2020
, “
A Length Scale Insensitive Anisotropic Phase Field Fracture Model for Hyperelastic Composites
,”
Int. J. Mech. Sci.
,
188
, p.
105941
.
28.
Vassilevski
,
P. S.
, and
Lazarov
,
R. D.
,
1996
, “
Preconditioning Mixed Finite Element Saddle-Point Elliptic Problems
,”
Numer. Linear Algebra Appl.
,
3
(
1
), pp.
1
20
.
29.
Benzi
,
M.
,
Golub
,
G. H.
, and
Liesen
,
J.
,
2005
, “
Numerical Solution of Saddle Point Problems
,”
Acta Numer.
,
14
, pp.
1
137
.
30.
Loghin
,
D.
, and
Wathen
,
A. J.
,
2004
, “
Analysis of Preconditioners for Saddle-Point Problems
,”
SIAM J. Sci. Comput.
,
25
(
6
), pp.
2029
2049
.
31.
Taylor
,
R. L.
,
2000
, “
A Mixed-Enhanced Formulation Tetrahedral Finite Elements
,”
Int. J. Numer. Methods Eng.
,
47
(
1–3
), pp.
205
227
.
32.
Oñate
,
E.
,
Rojek
,
J.
,
Taylor
,
R. L.
, and
Zienkiewicz
,
O. C.
,
2004
, “
Finite Calculus Formulation for Incompressible Solids Using Linear Triangles and Tetrahedra
,”
Int. J. Numer. Methods Eng.
,
59
(
11
), pp.
1473
1500
.
33.
Gavagnin
,
C.
,
Sanavia
,
L.
, and
De Lorenzis
,
L.
,
2020
, “
Stabilized Mixed Formulation for Phase-Field Computation of Deviatoric Fracture in Elastic and Poroelastic Materials
,”
Comput. Mech.
,
65
(
6
), pp.
1447
1465
.
34.
Mang
,
K.
,
Wick
,
T.
, and
Wollner
,
W.
,
2020
, “
A Phase-Field Model for Fractures in Nearly Incompressible Solids
,”
Comput. Mech.
,
65
(
1
), pp.
61
78
.
35.
Alessi
,
R.
,
Freddi
,
F.
, and
Mingazzi
,
L.
,
2020
, “
Phase-Field Numerical Strategies for Deviatoric Driven Fractures
,”
Comput. Methods Appl. Mech. Eng.
,
359
, p.
112651
.
36.
Suh
,
H. S.
,
Sun
,
W.
, and
O’Connor
,
D. T.
,
2020
, “
A Phase Field Model for Cohesive Fracture in Micropolar Continua
,”
Comput. Methods Appl. Mech. Eng.
,
369
, p.
113181
.
37.
Cajuhi
,
T.
,
Sanavia
,
L.
, and
De Lorenzis
,
L.
,
2018
, “
Phase-Field Modeling of Fracture in Variably Saturated Porous Media
,”
Comput. Mech.
,
61
(
3
), pp.
299
318
.
38.
Wriggers
,
P.
,
De Bellis
,
M.
, and
Hudobivnik
,
B.
,
2021
, “
A Taylor–Hood Type Virtual Element Formulations for Large Incompressible Strains
,”
Comput. Methods Appl. Mech. Eng.
,
385
, p.
114021
.
39.
Klaas
,
O.
,
Maniatty
,
A.
, and
Shephard
,
M. S.
,
1999
, “
A Stabilized Mixed Finite Element Method for Finite Elasticity.: Formulation for Linear Displacement and Pressure Interpolation
,”
Comput. Methods Appl. Mech. Eng.
,
180
(
1–2
), pp.
65
79
.
40.
Maniatty
,
A. M.
,
Liu
,
Y.
,
Klaas
,
O.
, and
Shephard
,
M. S.
,
2002
, “
Higher Order Stabilized Finite Element Method for Hyperelastic Finite Deformation
,”
Comput. Methods Appl. Mech. Eng.
,
191
(
13–14
), pp.
1491
1503
.
41.
Ang
,
I.
,
Bouklas
,
N.
, and
Li
,
B.
,
2022
, “
Stabilized Formulation for Phase-Field Fracture in Nearly Incompressible Hyperelasticity
,”
Int. J. Numer. Methods Eng.
,
123
(
19
), pp.
4655
4673
.
42.
Tian
,
F.
,
Tang
,
X.
,
Xu
,
T.
, and
Li
,
L.
,
2020
, “
An Adaptive Edge-Based Smoothed Finite Element Method (ES-FEM) for Phase-Field Modeling of Fractures at Large Deformations
,”
Comput. Methods Appl. Mech. Eng.
,
372
, p.
113376
.
43.
Swamynathan
,
S.
,
Jobst
,
S.
, and
Keip
,
M.-A.
,
2021
, “
An Energetically Consistent Tension–Compression Split for Phase-Field Models of Fracture at Large Deformations
,”
Mech. Mater.
,
157
, p.
103802
.
44.
Arunachala
,
P. K.
,
Rastak
,
R.
, and
Linder
,
C.
,
2021
, “
Energy Based Fracture Initiation Criterion for Strain-Crystallizing Rubber-Like Materials With Pre-existing Cracks
,”
J. Mech. Phys. Solids
,
157
, p.
104617
.
45.
Swamynathan
,
S.
,
Jobst
,
S.
,
Kienle
,
D.
, and
Keip
,
M.-A.
,
2022
, “
Phase-Field Modeling of Fracture in Strain-Hardening Elastomers: Variational Formulation, Multiaxial Experiments and Validation
,”
Eng. Fract. Mech.
,
265
, p.
108303
.
46.
Arunachala
,
P. K.
,
Vajari
,
S. A.
,
Neuner
,
M.
, and
Linder
,
C.
,
2023
, “
A Multiscale Phase Field Fracture Approach Based on the Non-affine Microsphere Model for Rubber-Like Materials
,”
Comput. Methods Appl. Mech. Eng.
,
410
, p.
115982
.
47.
Feng
,
H.
, and
Jiang
,
L.
,
2023
, “
Phase Field Modeling on Fracture Behaviors of Elastomers Considering Deformation-Dependent and Damage-Dependent Material Viscosity
,”
Eng. Fract. Mech.
,
292
, p.
109621
.
48.
Ye
,
J.-Y.
,
Ballarini
,
R.
, and
Zhang
,
L.-W.
,
2023
, “
A Nonlinear and Rate-Dependent Fracture Phase Field Framework for Multiple Cracking of Polymer
,”
Comput. Methods Appl. Mech. Eng.
,
410
, p.
116017
.
49.
Zhao
,
Z.
,
Wang
,
P.
,
Duan
,
S.
,
Lei
,
M.
, and
Lei
,
H.
,
2023
, “
A Phase Field Model for the Damage and Fracture of Multiple Network Elastomers
,”
ASME J. Appl. Mech.
,
90
(
2
), p.
021006
.
50.
Pranavi
,
D.
,
Steinmann
,
P.
, and
Rajagopal
,
A.
,
2024
, “
A Unifying Finite Strain Modeling Framework for Anisotropic Mixed-Mode Fracture in Soft Materials
,”
Comput. Mech.
,
73
(
1
), pp.
123
137
.
51.
De Borst
,
R.
,
Benallal
,
A.
, and
Heeres
,
O.
,
1996
, “
A Gradient-Enhanced Damage Approach to Fracture
,”
Le Journal de Physique IV
,
6
(
C6
), pp.
C6
491
.
52.
Peerlings
,
R. H.
,
de Borst
,
R.
,
Brekelmans
,
W. M.
, and
de Vree
,
J.
,
1996
, “
Gradient Enhanced Damage for Quasi-brittle Materials
,”
Int. J. Numer. Methods Eng.
,
39
(
19
), pp.
3391
3403
.
53.
Comi
,
C.
,
1999
, “
Computational Modelling of Gradient-Enhanced Damage in Quasi-brittle Materials
,”
Mech. Cohesive-Frictional Mater.: Int. J. Exp. Modell. Comput. Mater. Struct.
,
4
(
1
), pp.
17
36
.
54.
Pham
,
K.
,
Amor
,
H.
,
Marigo
,
J.-J.
, and
Maurini
,
C.
,
2011
, “
Gradient Damage Models and Their Use to Approximate Brittle Fracture
,”
Int. J. Damage Mech.
,
20
(
4
), pp.
618
652
.
55.
de Borst
,
R.
, and
Verhoosel
,
C. V.
,
2016
, “
Gradient Damage vs Phase-Field Approaches for Fracture: Similarities and Differences
,”
Comput. Methods Appl. Mech. Eng.
,
312
, pp.
78
94
.
56.
Geers
,
M.
,
De Borst
,
R.
,
Brekelmans
,
W.
, and
Peerlings
,
R.
,
1998
, “
Strain-Based Transient-Gradient Damage Model for Failure Analyses
,”
Comput. Methods Appl. Mech. Eng.
,
160
(
1–2
), pp.
133
153
.
57.
Wosatko
,
A.
,
2021
, “
Comparison of Evolving Gradient Damage Formulations With Different Activity Functions
,”
Arch. Appl. Mech.
,
91
(
2
), pp.
597
627
.
58.
Wosatko
,
A.
,
2022
, “
Survey of Localizing Gradient Damage in Static and Dynamic Tension of Concrete
,”
Materials
,
15
(
5
), p.
1875
.
59.
Lorentz
,
E.
,
2017
, “
A Nonlocal Damage Model for Plain Concrete Consistent With Cohesive Fracture
,”
Int. J. Fracture
,
207
(
2
), pp.
123
159
.
60.
Talamini
,
B.
,
Mao
,
Y.
, and
Anand
,
L.
,
2018
, “
Progressive Damage and Rupture in Polymers
,”
J. Mech. Phys. Solids
,
111
, pp.
434
457
.
61.
Kuhl
,
E.
,
Ramm
,
E.
, and
de Borst
,
R.
,
2000
, “
An Anisotropic Gradient Damage Model for Quasi-brittle Materials
,”
Comput. Methods Appl. Mech. Eng.
,
183
(
1–2
), pp.
87
103
.
62.
Marigo
,
J.-J.
,
Maurini
,
C.
, and
Pham
,
K.
,
2016
, “
An Overview of the Modelling of Fracture by Gradient Damage Models
,”
Meccanica
,
51
(
12
), pp.
3107
3128
.
63.
Seupel
,
A.
, and
Kuna
,
M.
,
2019
, “
A Gradient-Enhanced Damage Model Motivated by Engineering Approaches to Ductile Failure of Steels
,”
Int. J. Damage Mech.
,
28
(
8
), pp.
1261
1296
.
64.
Zhao
,
D.
,
Yin
,
B.
,
Tarachandani
,
S.
, and
Kaliske
,
M.
,
2023
, “
A Modified Cap Plasticity Description Coupled With a Localizing Gradient-Enhanced Approach for Concrete Failure Modeling
,”
Comput. Mech.
,
72
(
4
), pp.
787
801
.
65.
Saji
,
R. P.
,
Pantidis
,
P.
, and
Mobasher
,
M. E.
,
2024
, “
A New Unified Arc-Length Method for Damage Mechanics Problems
,”
Comput. Mech.
, pp.
1
32
.
66.
Valverde-González
,
A.
,
Reinoso
,
J.
,
Dortdivanlioglu
,
B.
, and
Paggi
,
M.
,
2023
, “
Locking Treatment of Penalty-Based Gradient-Enhanced Damage Formulation for Failure of Compressible and Nearly Incompressible Hyperelastic Materials
,”
Comput. Mech.
,
72
(
4
), pp.
635
662
.
67.
Lamm
,
L.
,
Pfeifer
,
J.
,
Holthusen
,
H.
,
Schaaf
,
B.
,
Seewald
,
R.
,
Schiebahn
,
A.
,
Brepols
,
T.
,
Feldmann
,
M.
,
Reisgen
,
U.
, and
Reese
,
S.
,
2024
, “
Gradient-Extended Damage Modelling for Polymeric Materials at Finite Strains: Rate-Dependent Damage Evolution Combined With Viscoelasticity
,”
Eur. J. Mech. A/Solids
,
103
, p.
105121
.
68.
Forest
,
S.
,
2009
, “
Micromorphic Approach for Gradient Elasticity, Viscoplasticity, and Damage
,”
J. Eng. Mech.
,
135
(
3
), pp.
117
131
.
69.
Lamm
,
L.
,
Awad
,
A.
,
Pfeifer
,
J.
,
Holthusen
,
H.
,
Felder
,
S.
,
Reese
,
S.
, and
Brepols
,
T.
,
2024
, “
A Gradient-Extended Thermomechanical Model for Rate-Dependent Damage and Failure Within Rubberlike Polymeric Materials at Finite Strains
,”
Int. J. Plast.
,
173
, p.
103883
.
70.
Sluys
,
L. J.
, and
de Borst
,
R.
,
1992
, “
Wave Propagation and Localization in a Rate-Dependent Cracked Medium-Model Formulation and One-Dimensional Examples
,”
Int. J. Solids Struct.
,
29
(
23
), pp.
2945
2958
.
71.
Alnæs
,
M.
,
Blechta
,
J.
,
Hake
,
J.
,
Johansson
,
A.
,
Kehlet
,
B.
,
Logg
,
A.
,
Richardson
,
C.
,
Ring
,
J.
,
Rognes
,
M. E.
, and
Wells
,
G. N.
,
2015
, “
The FEniCS Project Version 1.5
,”
Arch. Numer. Softw.
,
3
(
100
), pp.
9
23
.
72.
Holzapfel
,
G. A.
,
2002
,
Nonlinear Solid Mechanics: A Continuum Approach for Engineering Science
,
Kluwer Academic Publishers Dordrecht
.
73.
Brink
,
U.
, and
Stein
,
E.
,
1996
, “
On Some Mixed Finite Element Methods for Incompressible and Nearly Incompressible Finite Elasticity
,”
Comput. Mech.
,
19
(
1
), pp.
105
119
.
74.
Li
,
B.
, and
Bouklas
,
N.
,
2020
, “
A Variational Phase-Field Model for Brittle Fracture in Polydisperse Elastomer Networks
,”
Int. J. Solids Struct.
,
182
, pp.
193
204
.
75.
Miehe
,
C.
,
Welschinger
,
F.
, and
Hofacker
,
M.
,
2010
, “
Thermodynamically Consistent Phase-Field Models of Fracture: Variational Principles and Multi-field FE Implementations
,”
Int. J. Numer. Methods Eng.
,
83
(
10
), pp.
1273
1311
.
76.
Baldelli
,
A. A. L.
, and
Maurini
,
C.
,
2021
, “
Numerical Bifurcation and Stability Analysis of Variational Gradient-Damage Models for Phase-Field Fracture
,”
J. Mech. Phys. Solids
,
152
, p.
104424
.
77.
Le Tallec
,
P.
,
1994
, “
Numerical Methods for Nonlinear Three-Dimensional Elasticity
,”
Handb. Numer. Anal.
,
3
, pp.
465
622
.
78.
Ulloa
,
J.
,
Noii
,
N.
,
Alessi
,
R.
,
Aldakheel
,
F.
,
Degrande
,
G.
, and
François
,
S.
,
2022
, “
Variational Modeling of Hydromechanical Fracture in Saturated Porous Media: A Micromechanics-Based Phase-Field Approach
,”
Comput. Methods Appl. Mech. Eng.
,
396
, p.
115084
.
79.
Aldakheel
,
F.
,
Noii
,
N.
,
Wick
,
T.
,
Allix
,
O.
, and
Wriggers
,
P.
,
2021
, “
Multilevel Global–Local Techniques for Adaptive Ductile Phase-Field Fracture
,”
Comput. Methods Appl. Mech. Eng.
,
387
, p.
114175
.
80.
Slootman
,
J.
,
Waltz
,
V.
,
Yeh
,
C. J.
,
Baumann
,
C.
,
Göstl
,
R.
,
Comtet
,
J.
, and
Creton
,
C.
,
2020
, “
Quantifying Rate- and Temperature-Dependent Molecular Damage in Elastomer Fracture
,”
Phys. Rev. X
,
10
(
4
), p.
041045
. https://link.aps.org/doi/10.1103/PhysRevX.10.041045
81.
Slootman
,
J.
,
Yeh
,
C. J.
,
Millereau
,
P.
,
Comtet
,
J.
, and
Creton
,
C.
,
2022
, “
A Molecular Interpretation of the Toughness of Multiple Network Elastomers at High Temperature
,”
Proc. Natl. Acad. Sci. USA
,
119
(
13
), p.
e2116127119
.
82.
Peerlings
,
R. H.
,
Geers
,
M. G.
,
de Borst
,
R.
, and
Brekelmans
,
W.
,
2001
, “
A Critical Comparison of Nonlocal and Gradient-Enhanced Softening Continua
,”
Int. J. Solids Struct.
,
38
(
44–45
), pp.
7723
7746
.
83.
Arruda
,
E. M.
, and
Boyce
,
M. C.
,
1993
, “
A Three-Dimensional Constitutive Model for the Large Stretch Behavior of Rubber Elastic Materials
,”
J. Mech. Phys. Solids
,
41
(
2
), pp.
389
412
.
84.
Verhoosel
,
C. V.
,
Scott
,
M. A.
,
Hughes
,
T. J.
, and
De Borst
,
R.
,
2011
, “
An Isogeometric Analysis Approach to Gradient Damage Models
,”
Int. J. Numer. Methods Eng.
,
86
(
1
), pp.
115
134
.
85.
Sarkar
,
S.
,
Singh
,
I. V.
,
Mishra
,
B.
,
Shedbale
,
A.
, and
Poh
,
L.
,
2019
, “
A Comparative Study and ABAQUS Implementation of Conventional and Localizing Gradient Enhanced Damage Models
,”
Finite Elements Anal. Des.
,
160
, pp.
1
31
.
86.
Mao
,
Y.
, and
Anand
,
L.
,
2018
, “
A Theory for Fracture of Polymeric Gels
,”
J. Mech. Phys. Solids
,
115
, pp.
30
53
.
87.
Mulderrig
,
J.
,
Talamini
,
B.
, and
Bouklas
,
N.
,
2023
, “
A Statistical Mechanics Framework for Polymer Chain Scission, Based on the Concepts of Distorted Bond Potential and Asymptotic Matching
,”
J. Mech. Phys. Solids
,
174
, p.
105244
.
88.
Li
,
F. Z.
,
Shih
,
C. F.
, and
Needleman
,
A.
,
1985
, “
A Comparison of Methods for Calculating Energy Release Rates
,”
Eng. Fract. Mech.
,
21
(
2
), pp.
405
421
.
89.
Bouklas
,
N.
,
Landis
,
C. M.
, and
Huang
,
R.
,
2015
, “
Effect of Solvent Diffusion on Crack-Tip Fields and Driving Force for Fracture of Hydrogels
,”
ASME J. Appl. Mech.
,
82
(
8
), p.
081007
.
90.
Rice
,
J. R.
,
1968
, “
A Path Independent Integral and the Approximate Analysis of Strain Concentration by Notches and Cracks
,”
J. Appl. Mech.
,
35
(
2
), pp.
379
386
.
91.
Rice
,
J. R.
,
1968
, “
Mathematical Analysis in the Mechanics of Fracture
,”
Fracture: Adv. Treatise
,
2
, pp.
191
311
.
You do not currently have access to this content.