Abstract

This work presents new formulas for determining the elastic moduli of a random ellipse-inclusion model with spring-layer imperfect interfaces in a two-dimensional space. The surface of the ellipse inclusion, with an infinitely thin coating, has a significant influence on the macroscopic elastic moduli of the composite materials, one of those cases is called spring-layer imperfect interfaces. Using the polarization approximation for the coated-ellipse inclusion model, we have constructed new solutions to determine the elastic moduli of the ellipse inclusion with spring-layer imperfect interfaces. From this, solutions can be obtained to determine the macroscopic elastic moduli of the random ellipse-inclusion model with spring-layer imperfect interfaces in the matrix, using polarization approximation (PA), differential approximation (DA), and fast Fourier transform (FFT). Comparative results demonstrate the effectiveness of these methods.

References

1.
Torquato
,
S.
,
2002
,
Random Heterogeneous Media
,
Springer
,
New York
.
2.
Eshelby
,
J. D.
,
1957
, “
The Determination of the Elastic Field of an Ellipsoidal Inclusion and Related Problems
,”
Proc. R. Soc. A: Math. Phys. Sci.
,
241
(
1226
), pp.
376
396
.
3.
Christensen
,
R. M.
,
1979
,
Mechanics of Composite Materials
,
Wiley
,
New York
.
4.
Bonnet
,
G.
,
2007
, “
Effective Properties of Elastic Periodic Composite Media with Fibers
,”
J. Mech. Phys. Solids
,
55
(
5
), pp.
881
899
.
5.
Mori
,
T.
, and
Tanaka
,
K.
,
1973
, “
Average Stress in Matrix and Average Elastic Energy of Materials With Misfitting Inclusions
,”
Acta Metall.
,
21
(
5
), pp.
571
574
.
6.
Mura
,
T.
,
1987
,
Micromechanics of Defects in Solids
,
Martinus-Nijhoff
,
Dordrecht
.
7.
Hashin
,
Z.
,
1991
, “
The Spherical Inclusion with Imperfect Interface
,”
ASME J. Appl. Mech.
,
58
(
2
), pp.
444
449
.
8.
Hashin
,
Z.
,
1992
, “
Extremum Principles for Elastic Heterogeneous Media With Imperfect Interfaces and Their Application to Bounding of Effective Moduli
,”
J. Mech. Phys. Solids
,
40
(
4
), pp.
767
781
.
9.
Qu
,
J. M.
,
1993
, “
The Effect of Slightly Weakened Interfaces on the Overall Elastic Properties of Composite Materials
,”
Mech. Mater.
,
14
(
4
), pp.
269
281
.
10.
Lipton
,
R.
, and
Vernescu
,
B.
,
1996
, “
Composites With Imperfect Interface
,”
Proc. R. Soc. A: Math. Phys. Eng. Sci.
,
452
(
1945
), pp.
329
358
. http://dx.doi.org/.10.1098/rspa.1996.0018
11.
Sharma
,
P.
, and
Ganti
,
S.
,
2004
, “
Size-Dependent Eshelbys Tensor for Embedded Nano-Inclusions Incorporating Surface/Interface Energies
,”
ASME J. Appl. Mech.
,
71
(
5
), pp.
663
671
.
12.
Duan
,
H. L.
,
Wang
,
J.
,
Huang
,
Z. P.
, and
Karihaloo
,
B. L.
,
2005
, “
Size-Dependent Effective Elastic Constants of Solids Containing Nano Inhomogeneities With Interface Stress
,”
J. Mech. Phys. Solids
,
53
(
7
), pp.
1574
1596
.
13.
Duan
,
H. L.
,
Yi
,
X.
,
Huang
,
Z. P.
, and
Wang
,
J.
,
2007
, “
A Unified Scheme for Prediction of Effective Moduli of Multiphase Composites with Interface Effects. Part I: Theoretical Framework
,”
Mech. Mater.
,
39
(
1
), pp.
81
93
.
14.
Benveniste
,
Y.
,
2006
, “
A General Interface Model for a Three-Dimensional Curved Thin Anisotropic Interphase Between two Anisotropic Media
,”
J. Mech. Phys. Solids
,
54
(
4
), pp.
708
734
.
15.
Brisard
,
S.
,
Dormieux
,
L.
, and
Kondo
,
D.
,
2010
, “
Hashin–Shtrikman Bounds on the Bulk Modulus of a Nanocomposite with Spherical Inclusions and Interface Effects
,”
Comput. Mater. Sci.
,
48
(
3
), pp.
589
596
.
16.
Gu
,
S. T.
, and
He
,
Q. C.
,
2011
, “
Interfacial Discontinuity Relations for Coupled Multifield Phenomena and Their Application to the Modelling of Thin Interphases as Imperfect Interfaces
,”
J. Mech. Phys. Solids
,
59
(
7
), pp.
1413
1426
.
17.
Zhu
,
Q. Z.
,
Gu
,
S. T.
,
Yvonnet
,
J.
,
Shao
,
J. F.
, and
He
,
Q. C.
,
2011
, “
Three-Dimensional Numerical Modelling by XFEM of Spring-Layer Imperfect Curved Interfaces with Applications to Composite Materials
,”
Int. J. Numer. Methods Eng.
,
88
(
4
), pp.
307
328
.
18.
Pham
,
D.-C.
,
Nguyen
,
T.-K.
, and
Tran
,
B.-V.
,
2019
, “
Macroscopic Elastic Moduli of Spherically-Symmetric-Inclusion Composites and the Microscopic Stress-Strain Fields
,”
Int. J. Solids Struct.
,
169
, pp.
141
165
.
19.
Nguyen
,
V.-L.
,
2024
, “
The Macroscopic Elastic Moduli of the Three-Phase Composite With Spring–Layer and Surface–Stress Imperfect Interfaces
,”
Arch. Appl. Mech.
,
94
(
5
), pp.
1397
1410
.
20.
Nguyen
,
V.-L.
,
2022
, “
Solutions for Elastic Moduli of Three-Phase Composite With Random Distribution of Coated-Ellipse Inclusions
,”
Funct. Compos. Struct.
,
4
(
4
), p.
045003
.
21.
Tran
,
A. B.
, and
Pham
,
D. C.
,
2015
, “
Polarization Approximations for the Macroscopic Elastic Constants of Transversely-Isotropic Multi-Component Unidirectional Fiber Composites
,”
J. Compos. Mater.
,
49
(
30
), pp.
3765
3780
.
22.
Nguyen
,
V.-L.
,
2022
, “
The Effective Conductivity of Elliptic Inclusion With Lowly and Highly Conducting Interface Model
,”
Mech. Res. Commun.
,
123
, p.
103902
.
23.
Nguyen
,
V.-L.
,
2023
, “
Estimating Macroscopic Conductivity of Randomly Elliptic Inclusion Model With Imperfect Interfaces
,”
Math. Mech. Solids
,
28
(
12
).
24.
Michel
,
J. C.
,
Moulinec
,
H.
, and
Suquet
,
P.
,
1999
, “
Effective Properties of Composite Materials with Periodic Microstructure: a Computational Approach
,”
Comput. Meth. Appl. Mech. Eng.
,
172
(
1–4
), pp.
109
143
.
25.
Moulinec
,
H.
, and
Suquet
,
P.
,
1994
, “
A Fast Numerical Method for Computing the Linear and Nonlinear Mechanical Properties of Composites
,”
C.R. Acad. Sci., Ser. II: Mec., Phys., Chim., Astron.
,
318
, pp.
1417
1423
. https://hal.science/hal-03019226
26.
Nemat-Nasser
,
S.
, and
Hori
,
M.
,
1999
,
Micromechanics: Overall Properties of Heterogeneous Materials
,
Elsevier
,
Amsterdam, New York
, p.
786
.
You do not currently have access to this content.