Abstract

Adhesion between a solid sphere and a thin film is a common but crucial issue in the study of biological membranes and two-dimensional materials. To supplement quantitative knowledge of membrane adhesion, this work addresses the axisymmetric adhesive contact between a rigid sphere and a circular freestanding elastic membrane clamped at the perimeter. For the membranes following linear stretching elasticity with initial radial tension, both the Johnson–Kendall–Roberts (JKR)- and Derjaguin–Muller–Toporov (DMT)-type adhesion as well as the transition regime in-between are considered. The dependency of contact radius and displacement on external force is studied analytically. In essence, the general solution is governed by three dimensionless parameters, reflecting the effects of membrane stretching elasticity, the range of adhesion force, and the membrane size. It is interestingly found that the membrane size does not affect the contact radius and displacement at zero external force at all and has minor influence on the value of pull-off force. The presented closed form solutions might be useful for the understanding of adhesion behaviors of sphere-membrane systems.

References

1.
Lee
,
C.
,
Wei
,
X.
,
Kysar
,
J. W.
, and
Hone
,
J.
,
2008
, “
Measurement of the Elastic Properties and Intrinsic Strength of Monolayer Graphene
,”
Science
,
321
(
5887
), pp.
385
388
.
2.
Suk
,
J. W.
,
Na
,
S. R.
,
Stromberg
,
R. J.
,
Stauffer
,
D.
,
Lee
,
J.
,
Ruoff
,
R. S.
, and
Liechti
,
K. M.
,
2016
, “
Probing the Adhesion Interactions of Graphene on Silicon Oxide by Nanoindentation
,”
Carbon
,
103
, pp.
63
72
.
3.
Koenig
,
S. P.
,
Boddeti
,
N. G.
,
Dunn
,
M. L.
, and
Bunch
,
J. S.
,
2011
, “
Ultrastrong Adhesion of Graphene Membranes
,”
Nat. Nanotechnol.
,
6
(
9
), pp.
543
546
.
4.
Li
,
Y.
,
Huang
,
S.
,
Wei
,
C.
,
Wu
,
C.
, and
Mochalin
,
V. N.
,
2019
, “
Adhesion of Two-Dimensional Titanium Carbides (MXenes) and Graphene to Silicon
,”
Nat. Commun.
,
10
(
1
), p.
3014
.
5.
Cao
,
G.
, and
Gao
,
H.
,
2019
, “
Mechanical Properties Characterization of Two-Dimensional Materials Via Nanoindentation Experiments
,”
Prog. Mater. Sci.
,
103
, pp.
558
595
.
6.
Giorgio
,
C. D.
,
Blundo
,
E.
,
Pettinari
,
G.
,
Felici
,
M.
,
Bobba
,
F.
, and
Polimeni
,
A.
,
2022
, “
Mechanical, Elastic, and Adhesive Properties of Two-Dimensional Materials: From Straining Techniques to State-of-the-Art Local Probe Measurements
,”
Adv. Mater. Interfaces
,
9
(
13
), p.
2102220
.
7.
Sen
,
S.
,
Subramanian
,
S.
, and
Discher
,
D. E.
,
2005
, “
Indentation and Adhesive Probing of a Cell Membrane With AFM: Theoretical Model and Experiments
,”
Biophys. J.
,
89
(
5
), pp.
3203
3213
.
8.
Lin
,
Y.
, and
Freund
,
L. B.
,
2007
, “
Forced Detachment of a Vesicle in Adhesive Contact With a Substrate
,”
Int. J. Solids Struct.
,
44
(
6
), pp.
1927
1938
.
9.
Alves
,
N. M.
,
Pashkuleva
,
I.
,
Reis
,
R. L.
, and
Mano
,
J. F.
,
2010
, “
Controlling Cell Behavior Through the Design of Polymer Surfaces
,”
Small
,
6
(
20
), pp.
2208
2220
.
10.
Sieben
,
C.
,
Kappel
,
C.
,
Zhu
,
R.
,
Wozniak
,
A.
,
Rankl
,
C.
,
Hinterdorfer
,
P.
,
Grubmüller
,
H.
, and
Herrmann
,
A.
,
2012
, “
Influenza Virus Binds Its Host Cell Using Multiple Dynamic Interactions
,”
PNAS
,
109
(
34
), pp.
13626
13631
.
11.
Zhao
,
Y. P.
,
Wang
,
L. S.
, and
Yu
,
T. X.
,
2003
, “
Mechanics of Adhesion in MEMS — A Review
,”
J. Adhes. Sci. Technol.
,
17
(
4
), pp.
519
546
.
12.
Parsons
,
J. T.
,
Horwitz
,
A. R.
, and
Schwartz
,
M. A.
,
2010
, “
Cell Adhesion: Integrating Cytoskeletal Dynamics and Cellular Tension
,”
Nat. Rev. Mol. Cell Biol.
,
11
(
9
), pp.
633
643
.
13.
Wang
,
J.
,
Lapinski
,
N.
,
Zhang
,
X.
, and
Jagota
,
A.
,
2020
, “
Adhesive Contact Between Cylindrical (Ebola) and Spherical (SARS-CoV-2) Viral Particles and a Cell Membrane
,”
Mech. Soft Mater.
,
2
(
11
), pp.
1
9
.
14.
Bakowsky
,
H.
,
Richter
,
T.
,
Kneuer
,
C.
,
Hoekstra
,
D.
,
Rothe
,
U.
,
Bendas
,
G.
,
Ehrhardt
,
C.
, and
Bakowsky
,
U.
,
2008
, “
Adhesion Characteristics and Stability Assessment of Lectin-Modified Liposomes for Site-Specific Drug Delivery
,”
BBA-Biomembr.
,
1778
(
1
), pp.
242
249
.
15.
Johnson
,
K. L.
,
Kendall
,
K.
, and
Roberts
,
A. D.
,
1971
, “
Surface Energy and the Contact of Elastic Solids
,”
Proc. R. Soc. Lond. Ser. A
,
324
(
1558
), pp.
301
313
.
16.
Derjaguin
,
B. V.
,
Muller
,
V. M.
, and
Toporov
,
Y. P.
,
1975
, “
Effect of Contact Deformations on the Adhesion of Particles
,”
J. Colloid Interface Sci.
,
53
(
2
), pp.
314
326
.
17.
Tabor
,
D.
,
1977
, “
Surface Forces and Surface Interactions
,”
J. Colloid Interface Sci.
,
58
(
1
), pp.
2
13
.
18.
Maugis
,
D.
,
1992
, “
Adhesion of Spheres: The JKR-DMT Transition Using a Dugdale Model
,”
J. Colloid Interface Sci.
,
150
(
1
), pp.
243
269
.
19.
Grierson
,
D. S.
,
Flater
,
E. E.
, and
Carpick
,
R. W.
,
2005
, “
Accounting for the JKR–DMT Transition in Adhesion and Friction Measurements With Atomic Force Microscopy
,”
J. Adhes. Sci. Technol.
,
19
(
3–5
), pp.
291
311
.
20.
Begley
,
M. R.
, and
Mackin
,
T. J.
,
2004
, “
Spherical Indentation of Freestanding Circular Thin Films in the Membrane Regime
,”
J. Mech. Phys. Solids
,
52
(
9
), pp.
2005
2023
.
21.
Jin
,
C.
,
Davoodabadi
,
A.
,
Li
,
J.
,
Wang
,
Y.
, and
Singler
,
T.
,
2017
, “
Spherical Indentation of a Freestanding Circular Membrane Revisited: Analytical Solutions and Experiments
,”
J. Mech. Phys. Solids
,
100
, pp.
85
102
.
22.
Zhang
,
X.
,
Shi
,
C.
,
Wu
,
Z.
, and
Yi
,
X.
,
2022
, “
Indentation of Pore-Spanning Lipid Membranes: Spring-Stiffening Or-Softening Responses and Apparent Stiffness Prediction
,”
Extreme Mech. Lett.
,
57
, p.
101917
.
23.
Shanahan
,
M. E. R.
,
2000
, “
Adhesion of a Punch to a Thin Membrane
,”
C.R. Acad. Sci. Ser. IV
,
1
(
4
), pp.
517
522
.
24.
Borodich
,
F.
, and
Galanov
,
B.
,
2016
, “
Contact Probing of Stretched Membranes and Adhesive Interactions: Graphene and Other Two-Dimensional Materials
,”
Proc. R. Soc. A
,
472
(
2195
), p.
20160550
.
25.
Ru
,
C. Q.
,
2020
, “
Adhesion of an Elastic Sphere on a Tensioned Membrane
,”
Math. Mech. Solids
,
25
(
8
), pp.
1534
1543
.
26.
Yuan
,
W.
, and
Wang
,
G.
,
2021
, “
Adhesion Between a Rigid Sphere and a Stretched Membrane Using the Dugdale Model
,”
Int. J. Solids Struct.
,
208–209
, pp.
214
220
.
27.
Argatov
,
I. I.
,
2021
, “
Indentation Mapping of Stretched Adhesive Membranes
,”
Proc. R. Soc. A
,
477
(
2251
), p.
20210349
.
28.
Zhou
,
L.
,
Wang
,
Y.
, and
Cao
,
G.
,
2013
, “
van der Waals Effect on the Nanoindentation Response of Free Standing Monolayer Graphene
,”
Carbon
,
57
, pp.
357
362
.
29.
Zhou
,
L.
,
Xue
,
J.
,
Wang
,
Y.
, and
Cao
,
G.
,
2013
, “
Molecular Mechanics Simulations of the Deformation Mechanism of Graphene Monolayer Under Free Standing Indentation
,”
Carbon
,
63
, pp.
117
124
.
30.
Wan
,
K. T.
,
2002
, “
Adherence of an Axisymmetric Flat Punch Onto a Clamped Circular Plate: Transition From a Rigid Plate to a Flexible Membrane
,”
ASME J. Appl. Mech.
,
69
(
2
), pp.
110
116
.
31.
Wan
,
K. T.
, and
Julien
,
S. E.
,
2009
, “
Confined Thin Film Delamination in the Presence of Intersurface Forces With Finite Range and Magnitude
,”
ASME J. Appl. Mech.
,
76
(
5
), p.
051005
.
32.
Li
,
G.
, and
Wan
,
K. T.
,
2014
, “
Adhesion Map for Thin Membranes
,”
ASME J. Appl. Mech.
,
81
(
2
), p.
021018
.
33.
Xu
,
D.
, and
Liechti
,
K. M.
,
2011
, “
Analytical and Experimental Study of a Circular Membrane in Adhesive Contact With a Rigid Substrate
,”
Int. J. Solids Struct.
,
48
(
20
), pp.
2965
2976
.
34.
Nadler
,
B.
, and
Tang
,
T.
,
2008
, “
Decohesion of a Rigid Punch From Non-linear Membrane Undergoing Finite Axisymmetric Deformation
,”
Int. J. Non-Linear Mech.
,
43
(
8
), pp.
716
721
.
35.
Long
,
R.
,
Shull
,
K. R.
, and
Hui
,
C. Y.
,
2010
, “
Large Deformation Adhesive Contact Mechanics of Circular Membranes With a Flat Rigid Substrate
,”
J. Mech. Phys. Solids
,
58
(
9
), pp.
1225
1242
.
36.
Patil
,
A.
,
DasGupta
,
A.
, and
Eriksson
,
A.
,
2015
, “
Contact Mechanics of a Circular Membrane Inflated Against a Deformable Substrate
,”
Int. J. Solids Struct.
,
67–68
, pp.
250
262
.
37.
Hallett
,
F. R.
,
Marsh
,
J.
,
Nickel
,
B. G.
, and
Wood
,
J. M.
,
1993
, “
Mechanical Properties of Vesicles II. A Model for Osmotic Swelling and Lysis
,”
Biophys. J.
,
64
(
2
), pp.
435
442
.
38.
Nehls
,
S.
, and
Janshoff
,
A.
,
2017
, “
Elastic Properties of Pore-Spanning Apical Cell Membranes Derived From MDCK II Cells
,”
Biophys. J.
,
113
(
8
), pp.
1822
1830
.
You do not currently have access to this content.