Abstract

Knowing the mechanical properties of cardiac myofibrils isolated from human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) can provide valuable insight into the structure and function of the heart muscle. Previous studies focused mostly on studying myofibrillar stiffness using simplified elastic models. In this study, the mechanical properties of myofibrils isolated from hiPSC-CMs were measured using atomic force microscopy (AFM). The quasi-linear viscoelastic (QLV) model was used to interpret the elastic and viscous properties of myofibrils. Since there have been no previous studies on the viscoelastic properties of myofibrils extracted from hiPSC-CMs, myofibrils extracted from porcine left-ventricular (LV) tissue were used to compare and verify experimental processes and QLV model parameters. The elastic modulus of myofibrils extracted from porcine LV tissue was determined to be 8.82 ± 6.09 kPa which is consistent with previous studies which reported that porcine LV tissue is less stiff on average than mouse and rat cardiac myofibrils. The elastic modulus of myofibrils extracted from hiPSC-CMs was found to be 9.78 ± 5.80 kPa, which is consistent with the range of 5–20 kPa reported for myofibrils extracted from the adult human heart. We found that myofibrils isolated from hiPSC-CMs relax slower than myofibrils extracted from porcine LV tissue, particularly in the first 0.25 s after the peak stress in the stress relaxation test. These findings provide important insights into the mechanical behavior of hiPSC-CMs and have implications for the development of treatments for heart diseases.

References

1.
Brunello
,
E.
,
Fusi
,
L.
,
Ghisleni
,
A.
,
Park-Holohan
,
S.-J.
,
Ovejero
,
J. G.
,
Narayanan
,
T.
, and
Irving
,
M.
,
2020
, “
Myosin Filament-Based Regulation of the Dynamics of Contraction in Heart Muscle
,”
Proc. Natl. Acad. Sci. U. S. A.
,
117
(
14
), pp.
8177
8186
.
2.
Linke
,
W. A.
,
Popov
,
V. I.
, and
Pollack
,
G. H.
,
1994
, “
Passive and Active Tension in Single Cardiac Myofibrils
,”
Biophys. J.
,
67
(
2
), pp.
782
792
.
3.
Wang
,
Z.
,
Golob
,
M. J.
, and
Chesler
,
N. C.
,
2016
, “Viscoelastic Properties of Cardiovascular Tissues,”
Viscoelast. Viscoplast. Mater.
, Vol.
2
,
M.
Fathy El-Amin
, ed.,
IntechOpen Limited
,
London, UK
, p.
64
.
4.
Granzier
,
H. L.
, and
Labeit
,
S.
,
2004
, “
The Giant Protein Titin: A Major Player in Myocardial Mechanics, Signaling, and Disease
,”
Circ. Res.
,
94
(
3
), pp.
284
295
.
5.
Fan
,
D.
,
Takawale
,
A.
,
Lee
,
J.
, and
Kassiri
,
Z.
,
2012
, “
Cardiac Fibroblasts, Fibrosis and Extracellular Matrix Remodeling in Heart Disease
,”
Fibrogen. Tissue Repair
,
5
(
1
), pp.
1
13
.
6.
Rodriguez
,
M. L.
,
McGarry
,
P. J.
, and
Sniadecki
,
N. J.
,
2013
, “
Review on Cell Mechanics: Experimental and Modeling Approaches
,”
ASME Appl. Mech. Rev.
,
65
(
6
), p.
060801
.
7.
Garcia
,
P. D.
, and
Garcia
,
R.
,
2018
, “
Determination of the Elastic Moduli of a Single Cell Cultured on a Rigid Support by Force Microscopy
,”
Biophys. J.
,
114
(
12
), pp.
2923
2932
.
8.
Labuda
,
A.
,
Brastaviceanu
,
T.
,
Pavlov
,
I.
,
Paul
,
W.
, and
Rassier
,
D.
,
2011
, “
Optical Detection System for Probing Cantilever Deflections Parallel to a Sample Surface
,”
Rev. Sci. Instrum.
,
82
(
1
), p.
013701
.
9.
Shalabi
,
N.
,
Cornachione
,
A.
,
de Souza Leite
,
F.
,
Vengallatore
,
S.
, and
Rassier
,
D. E.
,
2017
, “
Residual Force Enhancement is Regulated by Titin in Skeletal and Cardiac Myofibrils
,”
J. Physiol.
,
595
(
6
), pp.
2085
2098
.
10.
Lim
,
C.
,
Zhou
,
E.
, and
Quek
,
S.
,
2006
, “
Mechanical Models for Living Cells—A Review
,”
J. Biomech.
,
39
(
2
), pp.
195
216
.
11.
Kollmannsberger
,
P.
, and
Fabry
,
B.
,
2011
, “
Linear and Nonlinear Rheology of Living Cells
,”
Annu. Rev. Mater. Res.
,
41
(
1
), pp.
75
97
.
12.
Zhou
,
E.
,
Quek
,
S.
, and
Lim
,
C.
,
2010
, “
Power-Law Rheology Analysis of Cells Undergoing Micropipette Aspiration
,”
Biomech. Model. Mechanobiol.
,
9
(
5
), pp.
563
572
.
13.
Land
,
S.
,
Park-Holohan
,
S.-J.
,
Smith
,
N. P.
,
Dos Remedios
,
C. G.
,
Kentish
,
J. C.
, and
Niederer
,
S. A.
,
2017
, “
A Model of Cardiac Contraction Based on Novel Measurements of Tension Development in Human Cardiomyocytes
,”
J. Mol. Cell. Cardiol.
,
106
, pp.
68
83
.
14.
Fung
,
Y.-c.
,
2013
,
Biomechanics: Mechanical Properties of Living Tissues
,
Springer Science & Business Media
,
New York
.
15.
Deitch
,
S.
,
Gao
,
B. Z.
, and
Dean
,
D.
,
2012
, “
Effect of Matrix on Cardiomyocyte Viscoelastic Properties in 2D Culture
,”
Mol. Cell. Biomech.: MCB
,
9
(
3
), p.
227
.
16.
Nekouzadeh
,
A.
,
Pryse
,
K. M.
,
Elson
,
E. L.
, and
Genin
,
G. M.
,
2007
, “
A Simplified Approach to Quasi-Linear Viscoelastic Modeling
,”
J. Biomech.
,
40
(
14
), pp.
3070
3078
.
17.
Kohandel
,
M.
,
Sivaloganathan
,
S.
, and
Tenti
,
G.
,
2008
, “
Estimation of the Quasi-Linear Viscoelastic Parameters Using a Genetic Algorithm
,”
Math. Comput. Modell.
,
47
(
3–4
), pp.
266
270
.
18.
Helisaz
,
H.
,
Bacca
,
M.
, and
Chiao
,
M.
,
2021
, “
Quasi-Linear Viscoelastic Characterization of Soft Tissue-Mimicking Materials
,”
ASME J. Biomech. Eng.
,
143
(
6
), p.
061007
.
19.
Toms
,
S. R.
,
Dakin
,
G. J.
,
Lemons
,
J. E.
, and
Eberhardt
,
A. W.
,
2002
, “
Quasi-Linear Viscoelastic Behavior of the Human Periodontal Ligament
,”
J. Biomech.
,
35
(
10
), pp.
1411
1415
.
20.
Milne
,
R. D.
, and
Davis
,
J. P.
,
1992
, “
The Role of the Shaft in the Golf Swing
,”
J. Biomech.
,
25
(
9
), pp.
975
983
.
21.
Helisaz
,
H.
,
Bacca
,
M.
, and
Chiao
,
M.
,
2022
, “
A New Characterization Procedure for Quasi-Linear Viscoelastic Materials Using Indentation Test: Validation With Finite Element and Experimental Results
,”
Exp. Mech.
,
62
(
6
), pp.
893
908
.
22.
Milani-Nejad
,
N.
, and
Janssen
,
P. M.
,
2014
, “
Small and Large Animal Models in Cardiac Contraction Research: Advantages and Disadvantages
,”
Pharmacol. Ther.
,
141
(
3
), pp.
235
249
.
23.
Shaheen
,
N.
,
Shiti
,
A.
, and
Gepstein
,
L.
,
2017
, “
Pluripotent Stem Cell-Based Platforms in Cardiac Disease Modeling and Drug Testing
,”
Clin. Pharmacol. Ther.
,
102
(
2
), pp.
203
208
.
24.
Shafaattalab
,
S.
,
Li
,
A. Y.
,
Gunawan
,
M. G.
,
Kim
,
B.
,
Jayousi
,
F.
,
Maaref
,
Y.
, and
Song
,
Z.
,
2021
, “
Mechanisms of Arrhythmogenicity of Hypertrophic Cardiomyopathy-Associated Troponin T (TNNT2) Variant I79n
,”
Front. Cell Dev. Biol.
,
9
, p.
3455
.
25.
Pioner
,
J. M.
,
Racca
,
A. W.
,
Klaiman
,
J. M.
,
Yang
,
K. -C.
,
Guan
,
X.
,
Pabon
,
L.
, and
Muskheli
,
V.
, et al.,
2016
, “
Isolation and Mechanical Measurements of Myofibrils From Human Induced Pluripotent Stem Cell-Derived Cardiomyocytes
,”
Stem Cell Rep.
,
6
(
6
), pp.
885
896
.
26.
Colomo
,
F.
,
Nencini
,
S.
,
Piroddi
,
N.
,
Poggesi
,
C.
, and
Tesi
,
C.
,
1998
, “Calcium Dependence of the Apparent Rate of Force Generation in Single Striated Muscle Myofibrils Activated by Rapid Solution Changes,”
Mechanisms of Work Production and Work Absorption in Muscle
, Vol.
453
,
W. E.
Crusio
,
H.
Dong
,
H. H.
Radeke
,
N.
Rezaei
,
O.
Steinlein
, and
J.
Xiao
, eds.,
Springer
,
Switzerland
, pp.
373
382
.
27.
Butt
,
H.-J.
,
1991
, “
Measuring Electrostatic, Van Der Waals, and Hydration Forces in Electrolyte Solutions With an Atomic Force Microscope
,”
Biophys. J.
,
60
(
6
), pp.
1438
1444
.
28.
Dufrêne
,
Y. F.
,
2002
, “
Atomic Force Microscopy, A Powerful Tool in Microbiology
,”
J. Bacteriol.
,
184
(
19
), pp.
5205
5213
.
29.
Butt
,
H.-J.
,
1991
, “
Electrostatic Interaction in Atomic Force Microscopy
,”
Biophys. J.
,
60
(
4
), pp.
777
785
.
30.
Sherman
,
A. J.
,
Shrier
,
A.
, and
Cooper
,
E.
,
1999
, “
Series Resistance Compensation for Whole-Cell Patch-Clamp Studies Using a Membrane State Estimator
,”
Biophys. J.
,
77
(
5
), pp.
2590
2601
.
31.
Yeh
,
P.-Y.
,
Rossi
,
N. A.
,
Kizhakkedathu
,
J. N.
, and
Chiao
,
M.
,
2010
, “
A Silicone-Based Microfluidic Chip Grafted With Carboxyl Functionalized Hyperbranched Polyglycerols for Selective Protein Capture
,”
Microfluid. Nanofluid.
,
9
(
2
), pp.
199
209
.
32.
Yeh
,
P.-Y.
,
Kizhakkedathu
,
J. N.
, and
Chiao
,
M.
,
2010
, “A Novel Method to Attenuate Protein Adsorption Using Combinations of Polyethylene Glycol (PEG) Grafts and Piezoelectric Actuation”.
33.
Shalabi
,
N.
,
Persson
,
M.
,
Månsson
,
A.
,
Vengallatore
,
S.
, and
Rassier
,
D. E.
,
2017
, “
Sarcomere Stiffness During Stretching and Shortening of Rigor Skeletal Myofibrils
,”
Biophys. J.
,
113
(
12
), pp.
2768
2776
.
34.
Caporizzo
,
M. A.
,
Chen
,
C. Y.
,
Bedi
,
K.
,
Margulies
,
K. B.
, and
Prosser
,
B. L.
,
2020
, “
Microtubules Increase Diastolic Stiffness in Failing Human Cardiomyocytes and Myocardium
,”
Circulation
,
141
(
11
), pp.
902
915
.
35.
Puso
,
M.
, and
Weiss
,
J.
,
1998
, “
Finite Element Implementation of Anisotropic Quasi-Linear Viscoelasticity Using a Discrete Spectrum Approximation
”.
36.
Gimbel
,
J. A.
,
Sarver
,
J. J.
, and
Soslowsky
,
L. J.
,
2004
, “
The Effect of Overshooting the Target Strain on Estimating Viscoelastic Properties From Stress Relaxation Experiments
,”
ASME J. Biomech. Eng.
,
126
(
6
), pp.
844
848
.
37.
Voyiadjis
,
G. Z.
, and
Samadi-Dooki
,
A.
,
2018
, “
Hyperelastic Modeling of the Human Brain Tissue: Effects of No-Slip Boundary Condition and Compressibility on the Uniaxial Deformation
,”
J. Mech. Behav. Biomed. Mater.
,
83
, pp.
63
78
.
38.
Calvo-Gallego
,
J. L.
,
Domínguez
,
J.
,
Cía
,
T. G.
,
Ciriza
,
G. G.
, and
Martínez-Reina
,
J.
,
2018
, “
Comparison of Different Constitutive Models to Characterize the Viscoelastic Properties of Human Abdominal Adipose Tissue. A Pilot Study
,”
J. Mech. Behav. Biomed. Mater.
,
80
, pp.
293
302
.
39.
Troyer
,
K. L.
,
Estep
,
D. J.
, and
Puttlitz
,
C. M.
,
2012
, “
Viscoelastic Effects During Loading Play an Integral Role in Soft Tissue Mechanics
,”
Acta Biomater.
,
8
(
1
), pp.
234
243
.
40.
Labus
,
K. M.
, and
Puttlitz
,
C. M.
,
2016
, “
Viscoelasticity of Brain Corpus Callosum in Biaxial Tension
,”
J. Mech. Phys. Solids
,
96
, pp.
591
604
.
41.
Kobirumaki-Shimozawa
,
F.
,
Inoue
,
T.
,
Shintani
,
S. A.
,
Oyama
,
K.
,
Terui
,
T.
,
Minamisawa
,
S.
,
Ishiwata
,
S.
, and
Fukuda
,
N.
,
2014
, “
Cardiac Thin Filament Regulation and the Frank-Starling Mechanism
,”
J. Physiol. Sci.
,
64
(
4
), pp.
221
232
.
42.
Duginski
,
G. A.
,
Ross
,
C. J.
,
Laurence
,
D. W.
,
Johns
,
C. H.
, and
Lee
,
C. -H.
,
2020
, “
An Investigation of the Effect of Freezing Storage on the Biaxial Mechanical Properties of Excised Porcine Tricuspid Valve Anterior Leaflets
,”
J. Mech. Behav. Biomed. Mater.
,
101
, p.
103438
.
43.
Emig
,
R.
,
Zgierski-Johnston
,
C. M.
,
Timmermann
,
V.
,
Taberner
,
A. J.
,
Nash
,
M. P.
,
Kohl
,
P.
, and
Peyronnet
,
R.
,
2021
, “
Passive Myocardial Mechanical Properties: Meaning, Measurement, Models
,”
Biophys. Rev.
,
13
(
5
), pp.
1
24
.
44.
Makarenko
,
I.
,
Opitz
,
C.
,
Leake
,
M.
,
Neagoe
,
C.
,
Kulke
,
M.
,
Gwathmey
,
J.
,
Del Monte
,
F.
,
Hajjar
,
R.
, and
Linke
,
W.
,
2004
, “
Passive Stiffness Changes Caused by Upregulation of Compliant Titin Isoforms in Human Dilated Cardiomyopathy Hearts
,”
Circ. Res.
,
95
(
7
), pp.
708
716
.
45.
Huethorst
,
E.
,
Mortensen
,
P.
,
Simitev
,
R. D.
,
Gao
,
H.
,
Pohjolainen
,
L.
,
Talman
,
V.
,
Ruskoaho
,
H.
,
Burton
,
F. L.
,
Gadegaard
,
N.
, and
Smith
,
G. L.
,
2022
, “
Conventional Rigid 2D Substrates Cause Complex Contractile Signals in Monolayers of Human Induced Pluripotent Stem Cell-Derived Cardiomyocytes
,”
J. Physiol.
,
600
(
3
), pp.
483
507
.
46.
Cazorla
,
O.
,
Freiburg
,
A.
,
Helmes
,
M.
,
Centner
,
T.
,
McNabb
,
M.
,
Wu
,
Y.
,
Trombitas
,
K.
,
Labeit
,
S.
, and
Granzier
,
H.
,
2000
, “
Differential Expression of Cardiac Titin Isoforms and Modulation of Cellular Stiffness
,”
Circ. Res.
,
86
(
1
), pp.
59
67
.
47.
Lin
,
Y.-H.
,
Major
,
J. L.
,
Liebner
,
T.
,
Hourani
,
Z.
,
Travers
,
J. G.
,
Wennersten
,
S. A.
,
Haefner
,
K. R.
, et al.,
2022
, “
Hdac6 Modulates Myofibril Stiffness and Diastolic Function of the Heart
,”
J. Clin. Invest.
,
132
(
10
), p.
e148333
.
48.
Hoskins
,
A. C.
,
Jacques
,
A.
,
Bardswell
,
S. C.
,
McKenna
,
W. J.
,
Tsang
,
V.
,
Ehler
,
E.
,
Adams
,
K.
, et al.,
2010
, “
Normal Passive Viscoelasticity But Abnormal Myofibrillar Force Generation in Human Hypertrophic Cardiomyopathy
,”
J. Mol. Cell. Cardiol.
,
49
(
5
), pp.
737
745
.
You do not currently have access to this content.