Abstract

Discrete elastic rods (DER) method provides a computationally efficient means of simulating the nonlinear dynamics of one-dimensional slender structures. However, this dynamic-based framework can only provide first-order stable equilibrium configuration when combined with the dynamic relaxation method, while the unstable equilibria and potential critical points (i.e., bifurcation and fold point) cannot be obtained, which are important for understanding the bifurcation and stability landscape of slender bodies. Our approach modifies the existing DER technique from dynamic simulation to a static framework and computes eigenvalues and eigenvectors of the tangential stiffness matrix after each load incremental step for bifurcation and stability analysis. This treatment can capture both stable and unstable equilibrium modes, critical points, and trace solution curves. Three representative types of structures—beams, strips, and gridshells—are used as demonstrations to show the effectiveness of the modified numerical framework, which provides a robust tool for unveiling the bifurcation and multistable behaviors of slender structures.

References

1.
Kochmann
,
D. M.
, and
Bertoldi
,
K.
,
2017
, “
Exploiting Microstructural Instabilities in Solids and Structures: From Metamaterials to Structural Transitions
,”
ASME Appl. Mech. Rev.
,
69
(
5
), p.
050801
.
2.
Lestringant
,
C.
,
Audoly
,
B.
, and
Kochmann
,
D. M.
,
2019
, “
A Discrete, Geometrically Exact Method for Simulating Nonlinear, Elastic and Inelastic Beams
,”
Comput. Meth. Appl. Mech. Eng.
,
361
, p.
112741
.
3.
Bertoldi
,
K.
,
Vitelli
,
V.
,
Christensen
,
J.
, and
Van Hecke
,
M.
,
2017
, “
Flexible Mechanical Metamaterials
,”
Nat. Rev. Mater.
,
2
(
11
), pp.
1
11
.
4.
Liu
,
M.
,
Domino
,
L.
, and
Vella
,
D.
,
2020
, “
Tapered Elasticæ as a Route for Axisymmetric Morphing Structures
,”
Soft Matter
,
16
(
33
), pp.
7739
7750
.
5.
Huang
,
W.
,
Liu
,
M.
, and
Hsia
,
K. J.
,
2023
, “
A Discrete Model for the Geometrically Nonlinear Mechanics of Hard-Magnetic Slender Structures
,”
Extreme Mech. Lett.
,
59
, p.
101977
.
6.
Baraff
,
D.
, and
Witkin
,
A.
,
1998
, “
Large Steps in Cloth Simulation
,”
Proceedings of the 25th Annual Conference on Computer Graphics and Interactive Techniques
,
Orlando, FL
,
July 19–24
,
ACM
, pp.
43
54
.
7.
Grinspun
,
E.
,
Hirani
,
A. N.
,
Desbrun
,
M.
, and
Schröder
,
P.
,
2003
, “
Discrete Shells
,”
Proceedings of the 2003 ACM SIGGRAPH/Eurographics Symposium on Computer Animation
,
San Diego, CA
,
July 26–27
,
Eurographics Association
, pp.
62
67
.
8.
Bergou
,
M.
,
Wardetzky
,
M.
,
Robinson
,
S.
,
Audoly
,
B.
, and
Grinspun
,
E.
,
2008
, “
Discrete Elastic Rods
,”
ACM Trans. Graph.
,
27
(
3
), p.
63
.
9.
Bergou
,
M.
,
Audoly
,
B.
,
Vouga
,
E.
,
Wardetzky
,
M.
, and
Grinspun
,
E.
,
2010
, “
Discrete Viscous Threads
,”
ACM Trans. Graph.
,
29
, p.
116
.
10.
Kirchhoff
,
G.
,
1859
, “
Uber das gleichgewicht und die bewegung eines unendlich dunnen elastischen stabes
,”
J. Reine Angew. Math.
,
56
, pp.
285
313
.
11.
Audoly
,
B.
, and
Pomeau
,
Y.
,
2010
,
Elasticity and Geometry: From Hair Curls to the Non-Linear Response of Shells
,
Oxford University Press
,
Oxford, UK
.
12.
Jawed
,
M. K.
,
Da
,
F.
,
Joo
,
J.
,
Grinspun
,
E.
, and
Reis
,
P. M.
,
2014
, “
Coiling of Elastic Rods on Rigid Substrates
,”
Proc. Natl. Acad. Sci. U. S. A.
,
111
(
41
), pp.
14663
14668
.
13.
Jawed
,
M. K.
,
Khouri
,
N.
,
Da
,
F.
,
Grinspun
,
E.
, and
Reis
,
P. M.
,
2015
, “
Propulsion and Instability of a Flexible Helical Rod Rotating in a Viscous Fluid
,”
Phys. Rev. Lett.
,
115
(
16
), p.
168101
.
14.
Huang
,
W.
,
Huang
,
X.
,
Majidi
,
C.
, and
Jawed
,
M. K.
,
2020
, “
Dynamic Simulation of Articulated Soft Robots
,”
Nat. Commun.
,
11
(
1
), pp.
1
9
.
15.
Baek
,
C.
,
Sageman-Furnas
,
A. O.
,
Jawed
,
M. K.
, and
Reis
,
P. M.
,
2018
, “
Form Finding in Elastic Gridshells
,”
Proc. Natl. Acad. Sci. U. S. A.
,
115
(
1
), pp.
75
80
.
16.
Baek
,
C.
, and
Reis
,
P. M.
,
2019
, “
Rigidity of Hemispherical Elastic Gridshells Under Point Load Indentation
,”
J. Mech. Phys. Solids
,
124
, pp.
411
426
.
17.
Choi
,
A.
,
Tong
,
D.
,
Jawed
,
M. K.
, and
Joo
,
J.
,
2021
, “
Implicit Contact Model for Discrete Elastic Rods in Knot Tying
,”
ASME J. Appl. Mech.
,
88
(
5
), p.
051010
.
18.
Tong
,
D.
,
Choi
,
A.
,
Joo
,
J.
,
Borum
,
A.
, and
Jawed
,
M. K.
,
2022
, “
Snap Buckling in Overhand Knots
,”
ASME J. Appl. Mech.
,
90
(
4
), p.
041008
.
19.
Huang
,
W.
,
Ma
,
C.
, and
Qin
,
L.
,
2021
, “
Snap-Through Behaviors of a Pre-Deformed Ribbon Under Midpoint Loadings
,”
Int. J. Solids Struct.
,
232
, p.
111184
.
20.
Huang
,
W.
,
Ma
,
C.
,
Chen
,
Q.
, and
Qin
,
L.
,
2022
, “
A Discrete Differential Geometry-Based Numerical Framework for Extensible Ribbons
,”
Int. J. Solids. Struct
,
248
, p.
111619
.
21.
Zhang
,
P.
, and
Yang
,
C.
,
2022
, “
A Theoretical Proof of the Invalidity of Dynamic Relaxation Arc-Length Method for Snap-Back Problems
,”
Comput. Mech.
,
69
, pp.
335
344
.
22.
Dias
,
M. A.
, and
Audoly
,
B.
,
2014
, “
A Non-Linear Rod Model for Folded Elastic Strips
,”
J. Mech. Phys. Solids
,
62
, pp.
57
80
.
23.
Liu
,
M.
,
Gomez
,
M.
, and
Vella
,
D.
,
2021
, “
Delayed Bifurcation in Elastic Snap-Through Instabilities
,”
J. Mech. Phys. Solids
,
151
, p.
104386
.
24.
Starostin
,
E.
, and
van der Heijden
,
G.
,
2022
, “
Forceless Folding of Thin Annular Strips
,”
J. Mech. Phys. Solids
,
169
, p.
105054
.
25.
Yu
,
T.
, and
Hanna
,
J.
,
2019
, “
Bifurcations of Buckled, Clamped Anisotropic Rods and Thin Bands Under Lateral End Translations
,”
J. Mech. Phys. Solids
,
122
, pp.
657
685
.
26.
Yu
,
T.
,
Dreier
,
L.
,
Marmo
,
F.
,
Gabriele
,
S.
,
Parascho
,
S.
, and
Adriaenssens
,
S.
,
2021
, “
Numerical Modeling of Static Equilibria and Bifurcations in Bigons and Bigon Rings
,”
J. Mech. Phys. Solids
,
152
, p.
104459
.
27.
Yu
,
T.
,
Marmo
,
F.
,
Cesarano
,
P.
, and
Adriaenssens
,
S.
,
2023
, “
Continuous Modeling of Creased Annuli With Tunable Bistable and Looping Behaviors
,”
Proc. Natl. Acad. Sci. U. S. A.
,
120
(
4
), p.
e2209048120
.
28.
Starostin
,
E.
, and
van der Heijden
,
G.
,
2008
, “
Tension-Induced Multistability in Inextensible Helical Ribbons
,”
Phys. Rev. Lett.
,
101
(
8
), p.
084301
.
29.
Doedel
,
E. J.
,
2007
, “Lecture Notes on Numerical Analysis of Nonlinear Equations,”
Numerical Continuation Methods for Dynamical Systems
,
Springer
, pp.
1
49
.
30.
Dankowicz
,
H.
, and
Schilder
,
F.
,
2013
,
Recipes for Continuation
,
SIAM
,
Phiadelphia, PA
.
31.
Jawed
,
M. K.
,
Novelia
,
A.
, and
O’Reilly
,
O. M.
,
2018
,
A Primer on the Kinematics of Discrete Elastic Rods
,
Springer
,
The Netherlands
.
32.
Huang
,
W.
, and
Jawed
,
M. K.
,
2019
, “
Newmark-Beta Method in Discrete Elastic Rods Algorithm to Avoid Energy Dissipation
,”
ASME J. Appl. Mech.
,
86
(
8
), p.
084501
.
33.
Huang
,
W.
,
He
,
D.
,
Zhang
,
D.
,
Zou
,
H.
,
Liu
,
H.
,
Yang
,
W.
,
Qin
,
L.
, and
Fei
,
Q.
,
2022
, “
NonLinear Dynamic Modeling of a Tether-Net System for Space Debris Capture
,”
Nonlinear Dyn.
,
110
, pp.
2297
2315
.
34.
Guo
,
Y.
,
Do
,
H.
, and
Ruess
,
M.
,
2019
, “
Isogeometric Stability Analysis of Thin Shells: From Simple Geometries to Engineering Models
,”
Int. J. Numer. Meth. Eng.
,
118
(
8
), pp.
433
458
.
35.
Kadapa
,
C.
,
2021
, “
A Simple Extrapolated Predictor for Overcoming the Starting and Tracking Issues in the Arc-Length Method for Nonlinear Structural Mechanics
,”
Eng. Struct.
,
234
, p.
111755
.
36.
Liu
,
Z.
,
McBride
,
A.
,
Ghosh
,
A.
,
Heltai
,
L.
,
Huang
,
W.
,
Yu
,
T.
,
Steinmann
,
P.
, and
Saxena
,
P.
,
2022
, “
Computational Bifurcation Analysis of Hyperelastic Thin Shells
,” arXiv:2210.15854.
37.
Zhang
,
Y.
,
Jiao
,
Y.
,
Wu
,
J.
,
Ma
,
Y.
, and
Feng
,
X.
,
2020
, “
Configurations Evolution of a Buckled Ribbon in Response to Out-of-Plane Loading
,”
Extreme Mech. Lett.
,
34
, p.
100604
.
38.
Ma
,
C.
,
Zhang
,
Y.
,
Jiao
,
S.
, and
Liu
,
M.
,
2022
, “
Snap-Through of Graphene Nanowrinkles Under Out-of-Plane Compression
,”
Nanotechnology
,
34
(
1
), p.
015705
.
39.
Huang
,
W.
,
Wang
,
Y.
,
Li
,
X.
, and
Jawed
,
M. K.
,
2020
, “
Shear Induced Supercritical Pitchfork Bifurcation of Pre-Buckled Bands, From Narrow Strips to Wide Plates
,”
J. Mech. Phys. Solids
,
145
, p.
104168
.
40.
Huang
,
W.
,
Qin
,
L.
, and
Khalid Jawed
,
M.
,
2021
, “
Numerical Method for Direct Solution to Form-Finding Problem in Convex Gridshell
,”
ASME J. Appl. Mech.
,
88
(
2
), p.
021012
.
41.
Moulton
,
D.
,
Lessinnes
,
T.
, and
Goriely
,
A.
,
2013
, “
Morphoelastic Rods. Part I: A Single Growing Elastic Rod
,”
J. Mech. Phys. Solids
,
61
(
2
), pp.
398
427
.
42.
Mao
,
J.-J.
,
Wang
,
S.
,
Tan
,
W.
, and
Liu
,
M.
,
2022
, “
Modular Multistable Metamaterials With Reprogrammable Mechanical Properties
,”
Eng. Struct.
,
272
, p.
114976
.
43.
Huang
,
W.
,
Liu
,
M.
, and
Hsia
,
K. J.
,
2023
, “
Modeling of Magnetic Cilia Carpet Robots Using Discrete Differential Geometry Formulation
,”
Extreme Mech. Lett.
,
59
, p.
101967
.
44.
Farrell
,
P. E.
,
Beentjes
,
C. H.
, and
Birkisson
,
Á.
,
2016
, “
The Computation of Disconnected Bifurcation Diagrams
,” arXiv:1603.00809.
You do not currently have access to this content.