Abstract

This study aims to improve the impact protection performance of composite structures by combining a honeycomb core with negative Poisson’s ratio and graphene platelets reinforced (GPR) face sheets. The paper investigates the nonlinear repeated low-velocity impact responses of auxetic honeycomb composite plates, taking into account loading-unloading-reloading processes. Effective material properties of the auxetic honeycomb core and GPR face sheets are obtained by using the proposed modified Gibson function and Halpin–Tsai model. Then, taking into account geometric nonlinearity, the nonlinear equations of motion for the system were derived by Hamilton's principle. Afterward, the time-varying contact force between the composite plate and a spherical impactor is defined by the modified nonlinear Hertz contact theory. The Galerkin method and variable-step Runge–Kutta algorithm are selected to obtain nonlinear impact responses. The proposed methods are verified by finite element simulation and experiment. Finally, the study evaluates the effects of key parameters on the nonlinear repeated low-velocity impact responses.

References

1.
Zhou
,
H.
,
Xu
,
P.
, and
Xie
,
S.
,
2017
, “
Composite Energy-Absorbing Structures Combining Thin-Walled Metal and Honeycomb Structures
,”
Proc. Inst. Mech. Eng. Part F J. Rail Rapid Transit.
,
231
(
4
), pp.
394
405
.
2.
Olympio
,
K. R.
, and
Gandhi
,
F.
,
2010
, “
Flexible Skins for Morphing Aircraft Using Cellular Honeycomb Cores
,”
J. Intell. Mater. Syst. Struct.
,
21
(
17
), pp.
1719
1735
.
3.
Wang
,
Z.
,
2019
, “
Recent Advances in Novel Metallic Honeycomb Structure
,”
Compos. Part B Eng.
,
166
, pp.
731
741
.
4.
Li
,
X.
,
Zhang
,
P.
,
Shiqiang
,
L.
,
Wang
,
Z.
, and
Wu
,
G.
,
2018
, “
Dynamic Response of Aluminum Honeycomb Sandwich Panels Under Foam Projectile Impact
,”
Mech. Adv. Mater. Struct.
,
25
(
8
), pp.
637
646
.
5.
Bai
,
Y.
,
Yu
,
K.
,
Zhao
,
J.
, and
Zhao
,
R.
,
2018
, “
Experimental and Simulation Investigation of Temperature Effects on Modal Characteristics of Composite Honeycomb Structure
,”
Compos. Struct.
,
201
, pp.
816
827
.
6.
Zippo
,
A.
,
Ferrari
,
G.
,
Amabili
,
M.
,
Barbieri
,
M.
, and
Pellicano
,
F.
,
2015
, “
Active Vibration Control of a Composite Sandwich Plate
,”
Compos. Struct.
,
128
, pp.
100
114
.
7.
Amabili
,
M.
, and
Reddy
,
J. N.
,
2021
, “
Nonlinear Mechanics of Sandwich Plates: Layerwise Third-Order Thickness and Shear Deformation Theory
,”
Compos. Struct.
,
278
, p.
114693
.
8.
Alijani
,
F.
,
Amabili
,
M.
,
Ferrari
,
G.
, and
D’Alessandro
,
V.
,
2013
, “
Nonlinear Vibrations of Laminated and Sandwich Rectangular Plates With Free Edges. Part 2: Experiments & Comparisons
,”
Compos. Struct.
,
105
, pp.
437
445
.
9.
Liu
,
Y.
,
Qin
,
Z.
, and
Chu
,
F.
,
2022
, “
Nonlinear Forced Vibrations of Rotating Cylindrical Shells Under Multi-harmonic Excitations in Thermal Environment
,”
Nonlinear Dyn.
,
108
(
4
), pp.
2977
2991
.
10.
Liu
,
Y.
,
Zhu
,
R.
,
Qin
,
Z.
, and
Chu
,
F.
,
2022
, “
A Comprehensive Study on Vibration Characteristics of Corrugated Cylindrical Shells With Arbitrary Boundary Conditions
,”
Eng. Struct.
,
269
, p.
114818
.
11.
Dai
,
Q.
, and
Liu
,
Y.
,
2022
, “
Dynamic Stability Analysis of Periodic Loaded Rotating Conical Shells Using Floquet Exponent Method
,”
Mech. Based Des. Struct. Mach.
, pp.
1
15
.
12.
Lakes
,
R.
,
1987
, “
Foam Structures With a Negative Poisson’s Ratio
,”
Science (80-).
,
235
(
4792
), pp.
1038
1040
.
13.
Lim
,
T.-C.
,
2015
,
Auxetic Materials and Structures
,
Springer
,
New York
.
14.
Yang
,
L.
,
Harrysson
,
O.
,
West
,
H.
, and
Cormier
,
D.
,
2015
, “
Mechanical Properties of 3D Re-Entrant Honeycomb Auxetic Structures Realized Via Additive Manufacturing
,”
Int. J. Solids Struct.
,
69
, pp.
475
490
.
15.
Qiao
,
J.
, and
Chen
,
C. Q.
,
2015
, “
Analyses on the In-Plane Impact Resistance of Auxetic Double Arrowhead Honeycombs
,”
ASME J. Appl. Mech.
,
82
(
5
), p.
051007
.
16.
Zhu
,
X.
,
Zhang
,
J.
,
Zhang
,
W.
, and
Chen
,
J.
,
2019
, “
Vibration Frequencies and Energies of an Auxetic Honeycomb Sandwich Plate
,”
Mech. Adv. Mater. Struct.
,
26
(
23
), pp.
1951
1957
.
17.
Duc
,
N. D.
,
Seung-Eock
,
K.
,
Tuan
,
N. D.
,
Tran
,
P.
, and
Khoa
,
N. D.
,
2017
, “
New Approach to Study Nonlinear Dynamic Response and Vibration of Sandwich Composite Cylindrical Panels With Auxetic Honeycomb Core Layer
,”
Aerosp. Sci. Technol.
,
70
, pp.
396
404
.
18.
Li
,
H.
,
Li
,
Z.
,
Xiao
,
Z.
,
Xiong
,
J.
,
Wang
,
X.
,
Han
,
Q.
,
Zhou
,
J.
, and
Guan
,
Z.
,
2022
, “
Vibro-Impact Response of FRP Sandwich Plates With a Foam Core Reinforced by Chopped Fiber Rods
,”
Compos. Part B Eng.
,
242
, p.
110077
.
19.
Nguyen
,
N. V.
,
Nguyen-Xuan
,
H.
,
Nguyen
,
T. N.
,
Kang
,
J.
, and
Lee
,
J.
,
2021
, “
A Comprehensive Analysis of Auxetic Honeycomb Sandwich Plates With Graphene Nanoplatelets Reinforcement
,”
Compos. Struct.
,
259
, p.
113213
.
20.
Elamin
,
M.
,
Li
,
B.
, and
Tan
,
K. T.
,
2021
, “
Compression After Impact Performance of Carbon-Fiber Foam-Core Sandwich Composites in Low Temperature Arctic Conditions
,”
Compos. Struct.
,
261
, p.
113568
.
21.
Hao
,
Y. X.
,
Zhou
,
W. B.
,
Zhang
,
W.
,
Yang
,
S. W.
, and
Cao
,
Y. T.
,
2022
, “
Dynamic Snap-Through of Bi-Stable Laminates With Simply Supported at Four Corners Under Impact Loads
,”
Mech. Based Des. Struct. Mach.
, pp.
1
20
.
22.
Chen
,
S.
,
Tan
,
X.
,
Hu
,
J.
,
Wang
,
B.
,
Wang
,
L.
,
Zou
,
Y.
, and
Wu
,
L.
,
2022
, “
Continuous Carbon Fiber Reinforced Composite Negative Stiffness Mechanical Metamaterial for Recoverable Energy Absorption
,”
Compos. Struct.
,
288
, p.
115411
.
23.
Chen
,
Y.
,
Yang
,
J.
,
Peng
,
J.
,
Ji
,
C.
, and
Wang
,
B.
,
2023
, “
Low-Velocity Impact (LVI) and Post-Impact Fatigue Properties of GLARE Laminates With Holes
,”
Int. J. Fatigue
,
167
, p.
107318
.
24.
Zhou
,
X. Q.
, and
Wang
,
L.
,
2019
, “
Low-Velocity Impact Response of Viscoelastic Material Filled FG Honeycomb Reinforced Laminate Plate in Hygrothermal Environments
,”
Compos. Part B Eng.
,
165
, pp.
255
271
.
25.
Zhang
,
Y.
,
Yan
,
L.
,
Zhang
,
C.
, and
Guo
,
S.
,
2021
, “
Low-Velocity Impact Response of Tube-Reinforced Honeycomb Sandwich Structure
,”
Thin-Walled Struct.
,
158
, p.
107188
.
26.
He
,
W.
,
Yao
,
L.
,
Meng
,
X.
,
Sun
,
G.
,
Xie
,
D.
, and
Liu
,
J.
,
2019
, “
Effect of Structural Parameters on Low-Velocity Impact Behavior of Aluminum Honeycomb Sandwich Structures With CFRP Face Sheets
,”
Thin-Walled Struct.
,
137
, pp.
411
432
.
27.
Li
,
Q. Q.
,
He
,
Z. C.
,
Li
,
E.
, and
Cheng
,
A. G.
,
2019
, “
Improved Impact Responses of a Honeycomb Sandwich Panel Structure With Internal Resonators
,”
Eng. Optim.
,
52
(
5
), pp.
731
752
.
28.
Sun
,
G.
,
Huo
,
X.
,
Wang
,
H.
,
Hazell
,
P. J.
, and
Li
,
Q.
,
2021
, “
On the Structural Parameters of Honeycomb-Core Sandwich Panels Against Low-Velocity Impact
,”
Compos. Part B Eng.
,
216
, p.
108881
.
29.
Zhang
,
J.
,
Yuan
,
H.
,
Li
,
J.
,
Meng
,
J.
, and
Huang
,
W.
,
2022
, “
Dynamic Response of Multilayer Curved Aluminum Honeycomb Sandwich Beams Under Low-Velocity Impact
,”
Thin-Walled Struct.
,
177
, p.
109446
.
30.
Zhang
,
J.
,
Zhu
,
X.
,
Yang
,
X.
, and
Zhang
,
W.
,
2019
, “
Transient Nonlinear Responses of an Auxetic Honeycomb Sandwich Plate Under Impact Loads
,”
Int. J. Impact Eng.
,
134
, p.
103383
.
31.
Wang
,
H.
,
Lu
,
Z.
,
Yang
,
Z.
, and
Li
,
X.
,
2019
, “
A Novel Re-Entrant Auxetic Honeycomb With Enhanced in-Plane Impact Resistance
,”
Compos. Struct.
,
208
, pp.
758
770
.
32.
Katunin
,
A.
,
Pawlak
,
S.
,
Wronkowicz-Katunin
,
A.
, and
Tutajewicz
,
D.
,
2020
, “
Damage Progression in Fibre Reinforced Polymer Composites Subjected to Low-Velocity Repeated Impact Loading
,”
Compos. Struct.
,
252
, p.
112735
.
33.
Gan
,
J.
,
Li
,
F.
,
Li
,
K.
,
Li
,
E.
, and
Li
,
B.
,
2023
, “
Dynamic Failure of 3D Printed Negative-Stiffness Meta-Sandwich Structures Under Repeated Impact Loadings
,”
Compos. Sci. Technol.
,
234
, p.
109928
.
34.
Zhang
,
J.
,
Zhu
,
Y.
,
Li
,
K.
,
Yuan
,
H.
,
Du
,
J.
, and
Qin
,
Q.
,
2022
, “
Dynamic Response of Sandwich Plates With GLARE Face-Sheets and Honeycomb Core Under Metal Foam Projectile Impact: Experimental and Numerical Investigations
,”
Int. J. Impact Eng.
,
164
, p.
104201
.
35.
Liao
,
B.
,
Zhou
,
J.
,
Li
,
Y.
,
Wang
,
P.
,
Xi
,
L.
,
Gao
,
R.
,
Bo
,
K.
, and
Fang
,
D.
,
2020
, “
Damage Accumulation Mechanism of Composite Laminates Subjected to Repeated Low Velocity Impacts
,”
Int. J. Mech. Sci.
,
182
, p.
105783
.
36.
Dai
,
X.
,
Yuan
,
T.
,
Zu
,
Z.
,
Ye
,
H.
,
Cheng
,
X.
, and
Yang
,
F.
,
2020
, “
Experimental Investigation on the Response and Residual Compressive Property of Honeycomb Sandwich Structures Under Single and Repeated Low Velocity Impacts
,”
Mater. Today Commun.
,
25
, p.
101309
.
37.
Zhou
,
J.
,
Liu
,
B.
, and
Wang
,
S.
,
2022
, “
Finite Element Analysis on Impact Response and Damage Mechanism of Composite Laminates Under Single and Repeated Low-Velocity Impact
,”
Aerosp. Sci. Technol.
,
129
, p.
107810
.
38.
Balcı
,
O.
,
Çoban
,
O.
,
Bora
,
,
Akagündüz
,
E.
, and
Yalçin
,
E. B.
,
2017
, “
Experimental Investigation of Single and Repeated Impacts for Repaired Honeycomb Sandwich Structures
,”
Mater. Sci. Eng. A
,
682
, pp.
23
30
.
39.
Acar Yavuz
,
G.
,
Gören Kıral
,
B.
,
Hızarcı
,
B.
, and
Kıral
,
Z.
,
2022
, “
Low-Velocity Single and Repeated Impact Behavior of 3D Printed Honeycomb Cellular Panels
,”
Mater. Test.
,
64
(
10
), pp.
1420
1436
.
40.
Abo Sabah
,
S.H.
,
Kueh
,
A.B.H.
, and
Al-Fasih
,
M.Y.
,
2018
, “
Bio-Inspired vs. Conventional Sandwich Beams: A Low-Velocity Repeated Impact Behavior Exploration
,”
Constr. Build. Mater.
,
169
, pp.
193
204
.
41.
Gibson
,
L. J.
,
2003
, “
Cellular Solids
,”
Mrs Bull.
,
28
(
4
), pp.
270
274
.
42.
Feng
,
C.
,
Kitipornchai
,
S.
, and
Yang
,
J.
,
2017
, “
Nonlinear Bending of Polymer Nanocomposite Beams Reinforced With Non-Uniformly Distributed Graphene Platelets (GPLs)
,”
Compos. Part B Eng.
,
110
, pp.
132
140
.
43.
De Villoria
,
R. G.
, and
Miravete
,
A.
,
2007
, “
Mechanical Model to Evaluate the Effect of the Dispersion in Nanocomposites
,”
Acta Mater.
,
55
(
9
), pp.
3025
3031
.
44.
Abrate
,
S.
,
1998
,
Impact on Composite Structures
,
Cambridge University Press
,
Cambridge
.
45.
Crook
,
A. W.
,
1952
, “
A Study of Some Impacts Between Metal Bodies by a Piezo-Electric Method
,”
Proc. R. Soc. London. Ser. A. Math. Phys. Sci.
,
212
(
1110
), pp.
377
390
.
46.
Sun
,
C. T.
, and
Chen
,
J. K.
,
1985
, “
On the Impact of Initially Stressed Composite Laminates
,”
J. Compos. Mater.
,
19
(
6
), pp.
490
504
.
47.
Reddy
,
J. N.
,
2006
,
Theory and Analysis of Elastic Plates and Shells
,
CRC Press
,
Boca Raton, FL
.
48.
Amabili
,
M.
,
2018
,
Nonlinear Mechanics of Shells and Plates in Composite, Soft and Biological Materials
,
Cambridge University Press
,
Cambridge, UK
.
49.
Liu
,
Y.
,
Qin
,
Z.
, and
Chu
,
F.
,
2021
, “
Nonlinear Forced Vibrations of Functionally Graded Piezoelectric Cylindrical Shells Under Electric-Thermo-Mechanical Loads
,”
Int. J. Mech. Sci.
,
201
, p.
106474
.
50.
Amabili
,
M.
,
Sarkar
,
A.
, and
Païdoussis
,
M. P.
,
2006
, “
Chaotic Vibrations of Circular Cylindrical Shells: Galerkin Versus Reduced-Order Models Via the Proper Orthogonal Decomposition Method
,”
J. Sound Vib.
,
290
(
3
), pp.
736
762
.
51.
Liu
,
Y.
,
Qin
,
Z.
, and
Chu
,
F.
,
2021
, “
Nonlinear Forced Vibrations of FGM Sandwich Cylindrical Shells With Porosities on an Elastic Substrate
,”
Nonlinear Dyn.
,
104
(
2
), pp.
1007
1021
.
52.
Liu
,
Y.
,
Qin
,
Z.
, and
Chu
,
F.
,
2022
, “
Investigation of Magneto-Electro-Thermo-Mechanical Loads on Nonlinear Forced Vibrations of Composite Cylindrical Shells
,”
Commun. Nonlinear Sci. Numer. Simul.
,
107
, p.
106146
.
53.
Cash
,
J. R.
, and
Karp
,
A. H.
,
1990
, “
A Variable Order Runge-Kutta Method for Initial Value Problems With Rapidly Varying Right-Hand Sides
,”
ACM Trans. Math. Softw.
,
16
(
3
), pp.
201
222
.
54.
Zhang
,
Y.-W.
, and
She
,
G.-L.
,
2023
, “
Nonlinear Low-Velocity Impact Response of Graphene Platelet-Reinforced Metal Foam Cylindrical Shells Under Axial Motion With Geometrical Imperfection
,”
Nonlinear Dyn.
,
111
(
7
), pp.
6317
6334
.
55.
Bayat
,
M. R.
,
Rahmani
,
O.
, and
Mosavi Mashhadi
,
M.
,
2018
, “
Nonlinear Low-Velocity Impact Analysis of Functionally Graded Nanotube-Reinforced Composite Cylindrical Shells in Thermal Environments
,”
Polym. Compos.
,
39
(
3
), pp.
730
745
.
56.
Wang
,
Z.-X.
,
Xu
,
J.
, and
Qiao
,
P.
,
2014
, “
Nonlinear Low-Velocity Impact Analysis of Temperature-Dependent Nanotube-Reinforced Composite Plates
,”
Compos. Struct.
,
108
, pp.
423
434
.
57.
Liu
,
Y.
,
Hu
,
W.
,
Zhu
,
R.
,
Safaei
,
B.
,
Qin
,
Z.
, and
Chu
,
F.
,
2022
, “
Dynamic Responses of Corrugated Cylindrical Shells Subjected to Nonlinear Low-Velocity Impact
,”
Aerosp. Sci. Technol.
,
121
, p.
107321
.
You do not currently have access to this content.