Abstract

Achieving extreme deformations without electrical breakdown has been a longstanding challenge in the dielectric elastomer community. In this paper, we present a novel approach for accessing giant in-plane stretches in circular dielectric elastomer membranes by leveraging nonlinear dynamics, specifically short-duration voltage pulses. These voltage pulses—applied about nominal bias voltages where the large-stretch equilibrium does not experience dielectric breakdown—create transient stretches that, if sufficiently large, cause the membrane to dynamically snap-through to its large-stretch equilibrium. These giant deformations are reversible; pulsed voltage drops can return the membrane from its large-stretch equilibrium to its small-stretch equilibrium. Parametric analyses are used to determine the combinations of pulse amplitude and duration that result in snap-through. Corresponding through-thickness electric fields are shown to be below stretch-dependent dielectric strengths from the literature, suggesting practical feasibility. Unlike other techniques for accessing extreme stretches in dielectric elastomers, the present approach relies on voltage control alone; it therefore does not require altering the external mechanical forces that cause pre-stretch and can be applied without modifying the elastomer’s mechanical compliance. This research demonstrates that carefully designed voltage pulses may permit existing and emerging soft material technologies to access extreme, large-stretch equilibria without dielectric breakdown.

References

1.
Kornbluh
,
R. D.
,
Pelrine
,
R.
,
Joseph
,
J.
,
Heydt
,
R.
,
Pei
,
Q.
, and
Chiba
,
S.
,
1999
, “
High-Field Electrostriction of Elastomeric Polymer Dielectrics for Actuation
,”
Smart Structures and Materials 1999: Electroactive Polymer Actuators and Devices
, Vol.
3669
,
Newport Beach, CA
,
May 28
,
International Society for Optics and Photonics
, pp.
149
161
.
2.
Pelrine
,
R.
,
Kornbluh
,
R.
, and
Kofod
,
G.
,
2000
, “
High-Strain Actuator Materials Based on Dielectric Elastomers
,”
Adv. Mater.
,
12
(
16
), pp.
1223
1225
.
3.
Romasanta
,
L. J.
,
Lopez-Manchado
,
M. A.
, and
Verdejo
,
R.
,
2015
, “
Increasing the Performance of Dielectric Elastomer Actuators: A Review From the Materials Perspective
,”
Prog. Polym. Sci.
,
51
, pp.
188
211
.
4.
O’Halloran
,
A.
,
O’Malley
,
F.
, and
McHugh
,
P.
,
2008
, “
A Review on Dielectric Elastomer Actuators, Technology, Applications, and Challenges
,”
J. Appl. Phys.
,
104
(
7
), p.
071101
.
5.
Liu
,
B.
,
Chen
,
F.
,
Wang
,
S.
,
Fu
,
Z.
,
Cheng
,
T.
, and
Li
,
T.
,
2017
, “
Electromechanical Control and Stability Analysis of a Soft Swim-Bladder Robot Driven by Dielectric Elastomer
,”
ASME J. Appl. Mech.
,
84
(
9
), p.
091005
.
6.
Zhang
,
H.
,
Wang
,
Y.
,
Godaba
,
H.
,
Khoo
,
B. C.
,
Zhang
,
Z.
, and
Zhu
,
J.
,
2017
, “
Harnessing Dielectric Breakdown of Dielectric Elastomer to Achieve Large Actuation
,”
ASME J. Appl. Mech.
,
84
(
12
), p.
121011
.
7.
Gu
,
G.-Y.
,
Zhu
,
J.
,
Zhu
,
L.-M.
, and
Zhu
,
X.
,
2017
, “
A Survey on Dielectric Elastomer Actuators for Soft Robots
,”
Bioinsp. Biomim.
,
12
(
1
), p.
011003
.
8.
Qin
,
L.
,
Cao
,
J.
,
Tang
,
Y.
, and
Zhu
,
J.
,
2018
, “
Soft Freestanding Planar Artificial Muscle Based on Dielectric Elastomer Actuator
,”
ASME J. Appl. Mech.
,
85
(
5
), p.
051001
.
9.
Wang
,
Y.
,
Li
,
Z.
,
Qin
,
L.
,
Caddy
,
G.
,
Yap
,
C. H.
, and
Zhu
,
J.
,
2018
, “
Dielectric Elastomer Fluid Pump of High Pressure and Large Volume Via Synergistic Snap-Through
,”
ASME J. Appl. Mech.
,
85
(
10
), p.
101003
.
10.
Gupta
,
U.
,
Qin
,
L.
,
Wang
,
Y.
,
Godaba
,
H.
, and
Zhu
,
J.
,
2019
, “
Soft Robots Based on Dielectric Elastomer Actuators: A Review
,”
Smart Mater. Struct.
,
28
(
10
), p.
103002
.
11.
Sharma
,
A. K.
,
Kumar
,
P.
,
Singh
,
A.
,
Joglekar
,
D. M.
, and
Joglekar
,
M. M.
,
2019
, “
Electromechanical Instability of Dielectric Elastomer Actuators With Active and Inactive Electric Regions
,”
ASME J. Appl. Mech.
,
86
(
6
), p.
061008
.
12.
Goulbourne
,
N. C.
,
Son
,
S.
, and
Fox
,
J. W.
,
2007
, “
Self-Sensing McKibben Actuators Using Dielectric Elastomer Sensors
,”
Electroactive Polymer Actuators and Devices (EAPAD) 2007
, Vol.
6524
,
San Diego, CA
,
Apr. 4
.
International Society for Optics and Photonics
, p.
652414
.
13.
Son
,
S.
, and
Goulbourne
,
N.
,
2009
, “
Finite Deformations of Tubular Dielectric Elastomer Sensors
,”
J. Intell. Mater. Syst. Struct.
,
20
(
18
), pp.
2187
2199
.
14.
Mannsfeld
,
S. C. B.
,
Tee
,
B. C.-K.
,
Stoltenberg
,
R. M.
,
Chen
,
C. V. H.-H.
,
Barman
,
S.
,
Muir
,
B. V. O.
,
Sokolov
,
A. N.
,
Reese
,
C.
, and
Bao
,
Z.
,
2010
, “
Highly Sensitive Flexible Pressure Sensors With Microstructured Rubber Dielectric Layers
,”
Nat. Mater.
,
9
(
10
), pp.
859
864
.
15.
An
,
L.
,
Lu
,
T.
,
Xu
,
J.
,
Wang
,
Z.
,
Xu
,
M.
, and
Wang
,
T. J.
,
2018
, “
Soft Sensor for Measuring Wind Pressure
,”
Int. J. Mech. Sci.
,
141
, pp.
386
392
.
16.
Zhu
,
Y.
, and
Tairych
,
A.
,
2021
, “
Using a Flexible Substrate to Enhance the Sensitivity of Dielectric Elastomer Force Sensors
,”
Sens. Actuat., A
,
332
, p.
113167
.
17.
Koh
,
S. J. A.
,
Keplinger
,
C.
,
Li
,
T.
,
Bauer
,
S.
, and
Suo
,
Z.
,
2011
, “
Dielectric Elastomer Generators: How Much Energy Can Be Converted
?”
IEEE/ASME Trans. Mechatron.
,
16
(
1
), pp.
33
41
.
18.
McKay
,
T. G.
,
Rosset
,
S.
,
Anderson
,
I. A.
, and
Shea
,
H.
,
2014
, “
Dielectric Elastomer Generators That Stack Up
,”
Smart Mater. Struct.
,
24
(
1
), p.
015014
.
19.
Shian
,
S.
,
Huang
,
J.
,
Zhu
,
S.
, and
Clarke
,
D. R.
,
2014
, “
Optimizing the Electrical Energy Conversion Cycle of Dielectric Elastomer Generators
,”
Adv. Mater.
,
26
(
38
), pp.
6617
6621
.
20.
Vertechy
,
R.
,
Papini Rosati
,
G. P.
, and
Fontana
,
M.
,
2015
, “
Reduced Model and Application of Inflating Circular Diaphragm Dielectric Elastomer Generators for Wave Energy Harvesting
,”
ASME J. Vib. Acoust.
,
137
(
1
), p.
011004
.
21.
Moretti
,
G.
,
Rosset
,
S.
,
Vertechy
,
R.
,
Anderson
,
I.
, and
Fontana
,
M.
,
2020
, “
A Review of Dielectric Elastomer Generator Systems
,”
Adv. Intell. Syst.
,
2
(
10
), p.
2000125
.
22.
Zhang
,
J. W.
,
Ding
,
S. M.
, and
Wu
,
H. F.
,
2023
, “
Dynamics and Energy Harvesting Performance of a Nonlinear Arc-Cylinder Type Dielectric Elastomer Oscillator Under Unidirectional Harmonic Excitations
,”
Int. J. Mech. Sci.
,
244
, p.
108090
.
23.
Keplinger
,
C.
,
Li
,
T.
,
Baumgartner
,
R.
,
Suo
,
Z.
, and
Bauer
,
S.
,
2011
, “
Harnessing Snap-Through Instability in Soft Dielectrics to Achieve Giant Voltage-Triggered Deformation
,”
Soft Matter
,
8
(
2
), pp.
285
288
.
24.
Li
,
T.
,
Keplinger
,
C.
,
Baumgartner
,
R.
,
Bauer
,
S.
,
Yang
,
W.
, and
Suo
,
Z.
,
2013
, “
Giant Voltage-Induced Deformation in Dielectric Elastomers Near the Verge of Snap-Through Instability
,”
J. Mech. Phys. Solids
,
61
(
2
), pp.
611
628
.
25.
An
,
L.
,
Wang
,
F.
,
Cheng
,
S.
,
Lu
,
T.
, and
Wang
,
T. J.
,
2015
, “
Experimental Investigation of the Electromechanical Phase Transition in a Dielectric Elastomer Tube
,”
Smart Mater. Struct.
,
24
(
3
), p.
035006
.
26.
Zhao
,
X.
, and
Suo
,
Z.
,
2010
, “
Theory of Dielectric Elastomers Capable of Giant Deformation of Actuation
,”
Phys. Rev. Lett.
,
104
(
17
), p.
178302
.
27.
Dorfmann
,
L.
, and
Ogden
,
R. W.
,
2019
, “
Instabilities of Soft Dielectrics
,”
Philos. Trans. Royal Soc. A: Math. Phys. Eng. Sci.
,
377
(
2144
), p.
20180077
.
28.
Yang
,
S.
, and
Sharma
,
P.
,
2023
, “
A Tutorial on the Stability and Bifurcation Analysis of the Electromechanical Behaviour of Soft Materials
,”
ASME Appl. Mech. Rev.
,
75
(
4
), p.
044801
.
29.
Joglekar
,
M. M.
,
2014
, “
An Energy-Based Approach to Extract the Dynamic Instability Parameters of Dielectric Elastomer Actuators
,”
ASME J. Appl. Mech.
,
81
(
9
), p.
091010
.
30.
Joglekar
,
M. M.
,
2015
, “
Dynamic-Instability Parameters of Dielectric Elastomer Actuators With Equal Biaxial Prestress
,”
AIAA J.
,
53
(
10
), pp.
3129
3133
.
31.
Sharma
,
A. K.
,
Bajpayee
,
S.
,
Joglekar
,
D. M.
, and
Joglekar
,
M. M.
,
2017
, “
Dynamic Instability of Dielectric Elastomer Actuators Subjected to Unequal Biaxial Prestress
,”
Smart Mater. Struct.
,
26
(
11
), p.
115019
.
32.
Arora
,
N.
,
Kumar
,
P.
, and
Joglekar
,
M. M.
,
2018
, “
A Modulated Voltage Waveform for Enhancing the Travel Range of Dielectric Elastomer Actuators
,”
ASME J. Appl. Mech.
,
85
(
11
), p.
111009
.
33.
Chen
,
Y.
,
Agostini
,
L.
,
Moretti
,
G.
,
Fontana
,
M.
, and
Vertechy
,
R.
,
2019
, “
Dielectric Elastomer Materials for Large-Strain Actuation and Energy Harvesting: A Comparison Between Styrenic Rubber, Natural Rubber and Acrylic Elastomer
,”
Smart Mater. Struct.
,
28
(
11
), p.
114001
.
34.
Cooley
,
C. G.
, and
Lowe
,
R. L.
,
2022
, “
Unusual Nonlinear Frequency Response in Circular Dielectric Elastomer Membranes Excited by Fluctuating Through-Thickness Voltages
,”
Mech. Res. Commun.
,
124
, p.
103928
.
35.
Cooley
,
C. G.
, and
Lowe
,
R. L.
,
2023
, “
Nonlinear Vibration of Dielectric Elastomer Membranes With Axial Inertia Effects
,”
Int. J. Mech. Sci.
,
248
, p.
108205
.
36.
Mockensturm
,
E. M.
, and
Goulbourne
,
N.
,
2006
, “
Dynamic Response of Dielectric Elastomers
,”
Int. J. Non-Linear Mech.
,
41
(
3
), pp.
388
395
37.
Xu
,
B.-X.
,
Mueller
,
R.
,
Theis
,
A.
,
Klassen
,
M.
, and
Gross
,
D.
,
2012
, “
Dynamic Analysis of Dielectric Elastomer Actuators
,”
Appl. Phys. Lett.
,
100
(
11
), p.
112903
.
38.
Sheng
,
J.
,
Chen
,
H.
,
Li
,
B.
, and
Wang
,
Y.
,
2014
, “
Nonlinear Dynamic Characteristics of a Dielectric Elastomer Membrane Undergoing In-Plane Deformation
,”
Smart Mater. Struct.
,
23
(
4
), p.
045010
.
39.
Zhang
,
J.
,
Zhao
,
J.
,
Chen
,
H.
, and
Li
,
D.
,
2016
, “
Dynamic Analyses of Viscoelastic Dielectric Elastomers Incorporating Viscous Damping Effect
,”
Smart Mater. Struct.
,
26
(
1
), p.
015010
.
40.
Jin
,
X.
, and
Huang
,
Z.
,
2017
, “
Random Response of Dielectric Elastomer Balloon to Electrical or Mechanical Perturbation
,”
J. Intell. Material Syst. Struct.
,
28
(
2
), pp.
195
203
.
41.
Lv
,
X.
,
Liu
,
L.
,
Liu
,
Y.
, and
Leng
,
J.
,
2018
, “
Dynamic Performance of Dielectric Elastomer Balloon Incorporating Stiffening and Damping Effect
,”
Smart Mater. Struct.
,
27
(
10
), p.
105036
.
42.
Jia
,
K.
,
Lu
,
T.
, and
Wang
,
T.
,
2019
, “
Deformation Study of an In-Plane Oscillating Dielectric Elastomer Actuator Having Complex Modes
,”
J. Sound Vib.
,
463
, p.
114940
.
43.
Sharma
,
A. K.
,
2020
, “
Design of a Command-Shaping Scheme for Mitigating Residual Vibrations in Dielectric Elastomer Actuators
,”
ASME J. Appl. Mech.
,
87
(
2
), p.
021007
.
44.
Cao
,
C.
,
Hill
,
T. L.
,
Li
,
B.
,
Wang
,
L.
, and
Gao
,
X.
,
2021
, “
Nonlinear Dynamics of a Conical Dielectric Elastomer Oscillator With Switchable Mono to Bi-Stability
,”
Int. J. Solids Struct.
,
221
, pp.
18
30
.
45.
Cooley
,
C. G.
, and
Lowe
,
R. L.
,
2022
, “
In-Plane Nonlinear Vibration of Circular Dielectric Elastomer Membranes With Extreme Stretchability
,”
Eur. J. Mech.—A/Solids
,
96
, p.
104660
.
You do not currently have access to this content.