Abstract

Inspired by the helix-shaped microstructures found in many collagenous tissues, a class of three-dimensional (3D) soft network materials that incorporate similar helical microstructures into periodic 3D lattices was reported recently. Owing to their high stretchability, high air permeability, defect-insensitive behavior, and capabilities of reproducing anisotropic J-shaped stress–strain curves of real biological tissues (e.g., heart muscles), these 3D soft network materials hold great promise for applications in tissue engineering and bio-integrated devices. Rapid design optimization of such soft network materials in practical applications requires a relevant mechanics model to serve as the theoretical basis. This paper introduces a nonlinear micromechanics model of soft 3D network materials with cubic and octahedral lattice topologies, grounded on the development of finite-deformation beam theory for the 3D helical microstructure (i.e., the building-block structure of 3D network materials). As verified by finite element analysis (FEA) and experimental measurements, the developed model can well predict the anisotropic J-shaped stress–strain curves and deformed configurations under large levels of uniaxial stretching. The theoretical model allows a clear understanding of different roles of microstructure parameters on the J-shaped stress–strain curve (that is characterized by the critical strain of mode transition, as well as the stress and the tangent modulus at the critical strain). Furthermore, we demonstrate the utility of the theoretical model in the design optimization of 3D soft network materials to reproduce the target isotropic/anisotropic stress–strain curves of real biological tissues.

References

1.
Ling
,
S.
,
Zhang
,
Q.
,
Kaplan
,
D. L.
,
Omenetto
,
F.
,
Buehler
,
M. J.
, and
Qin
,
Z.
,
2016
, “
Printing of Stretchable Silk Membranes for Strain Measurements
,”
Lab Chip
,
16
(
13
), pp.
2459
2466
.
2.
Yang
,
W.
,
Sherman
,
V. R.
,
Gludovatz
,
B.
,
Schaible
,
E.
,
Stewart
,
P.
,
Ritchie
,
R. O.
, and
Meyers
,
M. A.
,
2015
, “
On the Tear Resistance of Skin
,”
Nat. Commun.
,
6
(
1
), pp.
1
10
.
3.
Kwansa
,
A. L.
,
Empson
,
Y. M.
,
Ekwueme
,
E. C.
,
Walters
,
V. I.
,
Freeman
,
J. W.
, and
Laurencin
,
C. T.
,
2010
, “
Novel Matrix Based Anterior Cruciate Ligament (ACL) Regeneration
,”
Soft Matter
,
6
(
20
), pp.
5016
5025
.
4.
Chamiot-Clerc
,
P.
,
Copie
,
X.
,
Renaud
,
J.-F.
,
Safar
,
M.
, and
Girerd
,
X.
,
1998
, “
Comparative Reactivity and Mechanical Properties of Human Isolated Internal Mammary and Radial Arteries
,”
Cardiovasc. Res.
,
37
(
3
), pp.
811
819
.
5.
Calladine
,
C.
,
Luisi
,
B.
, and
Pratap
,
J.
,
2013
, “
A ‘Mechanistic’ Explanation of the Multiple Helical Forms Adopted by Bacterial Flagellar Filaments
,”
J. Mol. Biol.
,
425
(
5
), pp.
914
928
.
6.
Abraham
,
Y.
,
Tamburu
,
C.
,
Klein
,
E.
,
Dunlop
,
J. W.
,
Fratzl
,
P.
,
Raviv
,
U.
, and
Elbaum
,
R.
,
2012
, “
Tilted Cellulose Arrangement as a Novel Mechanism for Hygroscopic Coiling in the Stork’s Bill Awn
,”
J. R. Soc. Interface
,
9
(
69
), pp.
640
647
.
7.
Darbaniyan
,
F.
,
Mozaffari
,
K.
,
Liu
,
L.
, and
Sharma
,
P.
,
2021
, “
Soft Matter Mechanics and the Mechanisms Underpinning the Infrared Vision of Snakes
,”
Matter
,
4
(
1
), pp.
241
252
.
8.
Meyers
,
M. A.
,
McKittrick
,
J.
, and
Chen
,
P.-Y.
,
2013
, “
Structural Biological Materials: Critical Mechanics-Materials Connections
,”
Science
,
339
(
6121
), pp.
773
779
.
9.
Mitsuhashi
,
K.
,
Ghosh
,
S.
, and
Koibuchi
,
H.
,
2018
, “
Mathematical Modeling and Simulations for Large-Strain J-Shaped Diagrams of Soft Biological Materials
,”
Polymers
,
10
(
7
), p.
715
.
10.
Kang
,
J.
,
Son
,
D.
,
Wang
,
G. J. N.
,
Liu
,
Y.
,
Lopez
,
J.
,
Kim
,
Y.
,
Oh
,
J. Y.
,
Katsumata
,
T.
,
Mun
,
J.
, and
Lee
,
Y.
,
2018
, “
Tough and Water-Insensitive Self-Healing Elastomer for Robust Electronic Skin
,”
Adv. Mater.
,
30
(
13
), p.
1706846
.
11.
Yan
,
G.
,
Zou
,
H.-X.
,
Wang
,
S.
,
Zhao
,
L.-C.
,
Wu
,
Z.-Y.
, and
Zhang
,
W.-M.
,
2021
, “
Bio-Inspired Vibration Isolation: Methodology and Design
,”
ASME Appl. Mech. Rev.
,
73
(
2
), p.
020801
.
12.
Zhang
,
H.
,
Guo
,
X.
,
Wu
,
J.
,
Fang
,
D.
, and
Zhang
,
Y.
,
2018
, “
Soft Mechanical Metamaterials With Unusual Swelling Behavior and Tunable Stress–Strain Curves
,”
Sci. Adv.
,
4
(
6
), p.
eaar8535
.
13.
Melchels
,
F. P.
,
Bertoldi
,
K.
,
Gabbrielli
,
R.
,
Velders
,
A. H.
,
Feijen
,
J.
, and
Grijpma
,
D. W.
,
2010
, “
Mathematically Defined Tissue Engineering Scaffold Architectures Prepared by Stereolithography
,”
Biomaterials
,
31
(
27
), pp.
6909
6916
.
14.
Zhao
,
X.
,
Kim
,
J.
,
Cezar
,
C. A.
,
Huebsch
,
N.
,
Lee
,
K.
,
Bouhadir
,
K.
, and
Mooney
,
D. J.
,
2011
, “
Active Scaffolds for On-Demand Drug and Cell Delivery
,”
Proc. Natl. Acad. Sci. U.S.A.
,
108
(
1
), pp.
67
72
.
15.
Kolesky
,
D. B.
,
Homan
,
K. A.
,
Skylar-Scott
,
M. A.
, and
Lewis
,
J. A.
,
2016
, “
Three-Dimensional Bioprinting of Thick Vascularized Tissues
,”
Proc. Natl. Acad. Sci. U.S.A.
,
113
(
12
), pp.
3179
3184
.
16.
Li
,
Z.
,
Seo
,
Y.
,
Aydin
,
O.
,
Elhebeary
,
M.
,
Kamm
,
R. D.
,
Kong
,
H.
, and
Saif
,
M. T. A.
,
2019
, “
Biohybrid Valveless Pump-Bot Powered by Engineered Skeletal Muscle
,”
Proc. Natl. Acad. Sci. U.S.A.
,
116
(
5
), pp.
1543
1548
.
17.
Song
,
H.
,
Luo
,
G.
,
Ji
,
Z.
,
Bo
,
R.
,
Xue
,
Z.
,
Yan
,
D.
,
Zhang
,
F.
, et al
,
2022
, “
Highly-Integrated, Miniaturized, Stretchable Electronic Systems Based on Stacked Multilayer Network Materials
,”
Sci. Adv.
,
8
(
11
), p.
eabm3785
.
18.
Shian
,
S.
,
Bertoldi
,
K.
, and
Clarke
,
D. R.
,
2015
, “
Dielectric Elastomer Based ‘Grippers’ for Soft Robotics
,”
Adv. Mater.
,
27
(
43
), pp.
6814
6819
.
19.
Wehner
,
M.
,
Truby
,
R. L.
,
Fitzgerald
,
D. J.
,
Mosadegh
,
B.
,
Whitesides
,
G. M.
,
Lewis
,
J. A.
, and
Wood
,
R. J.
,
2016
, “
An Integrated Design and Fabrication Strategy for Entirely Soft, Autonomous Robots
,”
Nature
,
536
(
7617
), pp.
451
455
.
20.
Bartlett
,
N. W.
,
Tolley
,
M. T.
,
Overvelde
,
J. T.
,
Weaver
,
J. C.
,
Mosadegh
,
B.
,
Bertoldi
,
K.
,
Whitesides
,
G. M.
, and
Wood
,
R. J.
,
2015
, “
A 3D-Printed, Functionally Graded Soft Robot Powered by Combustion
,”
Science
,
349
(
6244
), pp.
161
165
.
21.
Rafsanjani
,
A.
,
Bertoldi
,
K.
, and
Studart
,
A. R.
,
2019
, “
Programming Soft Robots With Flexible Mechanical Metamaterials
,”
Sci. Robot.
,
4
(
29
), p.
eaav7874
.
22.
Martinez
,
R. V.
,
Fish
,
C. R.
,
Chen
,
X.
, and
Whitesides
,
G. M.
,
2012
, “
Elastomeric Origami: Programmable Paper-Elastomer Composites as Pneumatic Actuators
,”
Adv. Funct. Mater.
,
22
(
7
), pp.
1376
1384
.
23.
Kumar
,
K.
,
Liu
,
J.
,
Christianson
,
C.
,
Ali
,
M.
,
Tolley
,
M. T.
,
Aizenberg
,
J.
,
Ingber
,
D. E.
,
Weaver
,
J. C.
, and
Bertoldi
,
K.
,
2017
, “
A Biologically Inspired, Functionally Graded End Effector for Soft Robotics Applications
,”
Soft Robot.
,
4
(
4
), pp.
317
323
.
24.
Mosadegh
,
B.
,
Polygerinos
,
P.
,
Keplinger
,
C.
,
Wennstedt
,
S.
,
Shepherd
,
R. F.
,
Gupta
,
U.
,
Shim
,
J.
,
Bertoldi
,
K.
,
Walsh
,
C. J.
, and
Whitesides
,
G. M.
,
2014
, “
Pneumatic Networks for Soft Robotics That Actuate Rapidly
,”
Adv. Funct. Mater.
,
24
(
15
), pp.
2163
2170
.
25.
Aydin
,
O.
,
Zhang
,
X.
,
Nuethong
,
S.
,
Pagan-Diaz
,
G. J.
,
Bashir
,
R.
,
Gazzola
,
M.
, and
Saif
,
M. T. A.
,
2019
, “
Neuromuscular Actuation of Biohybrid Motile Bots
,”
Proc. Natl. Acad. Sci. U.S.A.
,
116
(
40
), pp.
19841
19847
.
26.
Gu
,
G.
,
Zou
,
J.
,
Zhao
,
R.
,
Zhao
,
X.
, and
Zhu
,
X.
,
2018
, “
Soft Wall-Climbing Robots
,”
Sci. Robot.
,
3
(
25
), p.
eaat2874
.
27.
Lei
,
Z.
, and
Wu
,
P.
,
2018
, “
A Supramolecular Biomimetic Skin Combining a Wide Spectrum of Mechanical Properties and Multiple Sensory Capabilities
,”
Nat. Commun.
,
9
(
1
), pp.
1
7
.
28.
Lind
,
J. U.
,
Busbee
,
T. A.
,
Valentine
,
A. D.
,
Pasqualini
,
F. S.
,
Yuan
,
H.
,
Yadid
,
M.
,
Park
,
S.-J.
,
Kotikian
,
A.
,
Nesmith
,
A. P.
, and
Campbell
,
P. H.
,
2017
, “
Instrumented Cardiac Microphysiological Devices Via Multimaterial Three-Dimensional Printing
,”
Nat. Mater.
,
16
(
3
), pp.
303
308
.
29.
Zhu
,
W.
,
Li
,
J.
,
Leong
,
Y. J.
,
Rozen
,
I.
,
Qu
,
X.
,
Dong
,
R.
,
Wu
,
Z.
,
Gao
,
W.
,
Chung
,
P. H.
, and
Wang
,
J.
,
2015
, “
3D-Printed Artificial Microfish
,”
Adv. Mater.
,
27
(
30
), pp.
4411
4417
.
30.
Jackson
,
A.
, and
Zimmermann
,
J. B.
,
2012
, “
Neural Interfaces for the Brain and Spinal Cord—Restoring Motor Function
,”
Nat. Rev. Neurol.
,
8
(
12
), pp.
690
699
.
31.
Zhao
,
S.
,
Zhu
,
F.
,
Yan
,
Z.
,
Li
,
D.
,
Xiang
,
J.
,
Huang
,
Y.
, and
Luan
,
H.
,
2020
, “
A Nonlinear Mechanics Model of Zigzag Cellular Substrates for Stretchable Electronics
,”
ASME J. Appl. Mech.
,
87
(
6
), p.
061006
.
32.
Rogers
,
J. A.
,
Someya
,
T.
, and
Huang
,
Y.
,
2010
, “
Materials and Mechanics for Stretchable Electronics
,”
Science
,
327
(
5973
), pp.
1603
1607
.
33.
Meyers
,
M. A.
,
Chen
,
P.-Y.
,
Lin
,
A. Y.-M.
, and
Seki
,
Y.
,
2008
, “
Biological Materials: Structure and Mechanical Properties
,”
Prog. Mater. Sci.
,
53
(
1
), pp.
1
206
.
34.
Lv
,
S.
,
Dudek
,
D. M.
,
Cao
,
Y.
,
Balamurali
,
M.
,
Gosline
,
J.
, and
Li
,
H.
,
2010
, “
Designed Biomaterials to Mimic the Mechanical Properties of Muscles
,”
Nature
,
465
(
7294
), pp.
69
73
.
35.
Reis
,
P. M.
,
Jaeger
,
H. M.
, and
Van Hecke
,
M.
,
2015
, “
Designer Matter: A Perspective
,”
Extreme Mech. Lett.
,
5
, pp.
25
29
.
36.
Zhao
,
R.
,
Kim
,
Y.
,
Chester
,
S. A.
,
Sharma
,
P.
, and
Zhao
,
X.
,
2019
, “
Mechanics of Hard-Magnetic Soft Materials
,”
J. Mech. Phys. Solids
,
124
, pp.
244
263
.
37.
Jenett
,
B.
,
Cameron
,
C.
,
Tourlomousis
,
F.
,
Rubio
,
A. P.
,
Ochalek
,
M.
, and
Gershenfeld
,
N.
,
2020
, “
Discretely Assembled Mechanical Metamaterials
,”
Sci. Adv.
,
6
(
47
), p.
eabc9943
.
38.
Yang
,
W.
,
Liu
,
Q.
,
Gao
,
Z.
,
Yue
,
Z.
, and
Xu
,
B.
,
2018
, “
Theoretical Search for Heterogeneously Architected 2D Structures
,”
Proc. Natl. Acad. Sci. U.S.A.
,
115
(
31
), pp.
E7245
E7254
.
39.
Song
,
J.
,
Li
,
L.
,
Kong
,
S.
,
Yu
,
B.
,
Wan
,
Y.
,
Zhou
,
Y.
,
Chen
,
J.
,
Liu
,
S.
,
Xiao
,
R.
, and
Zhou
,
W.
,
2021
, “
Lightweight and Low Thermal Conducted Face-Centered-Cubic Cementitious Lattice Materials (FCLMs)
,”
Compos. Struct.
,
263
, p.
113536
.
40.
Li
,
X.
,
Fan
,
R.
,
Fan
,
Z.
, and
Lu
,
Y.
,
2021
, “
Programmable Mechanical Metamaterials Based on Hierarchical Rotating Structures
,”
Int. J. Solids Struct.
,
216
, pp.
145
155
.
41.
Song
,
J.
,
Chen
,
Y.
,
Cao
,
K.
,
Lu
,
Y.
,
Xin
,
J. H.
, and
Tao
,
X.
,
2018
, “
Fully Controllable Design and Fabrication of Three-Dimensional Lattice Supercapacitors
,”
ACS Appl. Mater. Interfaces
,
10
(
46
), pp.
39839
39850
.
42.
Hahn
,
V.
,
Kiefer
,
P.
,
Frenzel
,
T.
,
Qu
,
J.
,
Blasco
,
E.
,
Barner-Kowollik
,
C.
, and
Wegener
,
M.
,
2020
, “
Rapid Assembly of Small Materials Building Blocks (Voxels) Into Large Functional 3D Metamaterials
,”
Adv. Funct. Mater.
,
30
(
26
), p.
1907795
.
43.
Surjadi
,
J. U.
,
Gao
,
L.
,
Du
,
H.
,
Li
,
X.
,
Xiong
,
X.
,
Fang
,
N. X.
, and
Lu
,
Y.
,
2019
, “
Mechanical Metamaterials and Their Engineering Applications
,”
Adv. Eng. Mater.
,
21
(
3
), p.
1800864
.
44.
Xu
,
H.
,
Farag
,
A.
, and
Pasini
,
D.
,
2018
, “
Routes to Program Thermal Expansion in Three-Dimensional Lattice Metamaterials Built From Tetrahedral Building Blocks
,”
J. Mech. Phys. Solids
,
117
, pp.
54
87
.
45.
Meza
,
L. R.
,
Zelhofer
,
A. J.
,
Clarke
,
N.
,
Mateos
,
A. J.
,
Kochmann
,
D. M.
, and
Greer
,
J. R.
,
2015
, “
Resilient 3D Hierarchical Architected Metamaterials
,”
Proc. Natl. Acad. Sci. U.S.A.
,
112
(
37
), pp.
11502
11507
.
46.
Buehler
,
M. J.
,
2006
, “
Nature Designs Tough Collagen: Explaining the Nanostructure of Collagen Fibrils
,”
Proc. Natl. Acad. Sci. U.S.A.
,
103
(
33
), pp.
12285
12290
.
47.
Brunette
,
T.
,
Parmeggiani
,
F.
,
Huang
,
P.-S.
,
Bhabha
,
G.
,
Ekiert
,
D. C.
,
Tsutakawa
,
S. E.
,
Hura
,
G. L.
,
Tainer
,
J. A.
, and
Baker
,
D.
,
2015
, “
Exploring the Repeat Protein Universe Through Computational Protein Design
,”
Nature
,
528
(
7583
), pp.
580
584
.
48.
Wegst
,
U. G.
,
Bai
,
H.
,
Saiz
,
E.
,
Tomsia
,
A. P.
, and
Ritchie
,
R. O.
,
2015
, “
Bioinspired Structural Materials
,”
Nat. Mater.
,
14
(
1
), pp.
23
36
.
49.
Agrawal
,
H.
,
Liu
,
L.
, and
Sharma
,
P.
,
2016
, “
Revisiting the Curvature-Mediated Interactions Between Proteins in Biological Membranes
,”
Soft Matter
,
12
(
43
), pp.
8907
8918
.
50.
Yan
,
Z.
,
Wang
,
B.
,
Wang
,
K.
,
Zhao
,
S.
,
Li
,
S.
,
Huang
,
Y.
, and
Wang
,
H.
,
2019
, “
Cellular Substrate to Facilitate Global Buckling of Serpentine Structures
,”
ASME J. Appl. Mech.
,
87
(
2
), p.
024501
.
51.
Liu
,
J.
,
Yan
,
D.
,
Pang
,
W.
, and
Zhang
,
Y.
,
2021
, “
Design, Fabrication and Applications of Soft Network Materials
,”
Mater. Today
,
49
, pp.
324
350
.
52.
Ma
,
Q.
,
Cheng
,
H.
,
Jang
,
K.-I.
,
Luan
,
H.
,
Hwang
,
K.-C.
,
Rogers
,
J. A.
,
Huang
,
Y.
, and
Zhang
,
Y.
,
2016
, “
A Nonlinear Mechanics Model of Bio-Inspired Hierarchical Lattice Materials Consisting of Horseshoe Microstructures
,”
J. Mech. Phys. Solids
,
90
, pp.
179
202
.
53.
Liu
,
J.
,
Yan
,
D.
, and
Zhang
,
Y.
,
2021
, “
Mechanics of Unusual Soft Network Materials With Rotatable Structural Nodes
,”
J. Mech. Phys. Solids
,
146
, p.
104210
.
54.
Ma
,
Q.
, and
Zhang
,
Y.
,
2016
, “
Mechanics of Fractal-Inspired Horseshoe Microstructures for Applications in Stretchable Electronics
,”
ASME J. Appl. Mech.
,
83
(
11
), p.
111008
.
55.
Yin
,
Y.
,
Zhao
,
Z.
, and
Li
,
Y.
,
2021
, “
Theoretical and Experimental Research on Anisotropic and Nonlinear Mechanics of Periodic Network Materials
,”
J. Mech. Phys. Solids
,
152
, p.
104458
.
56.
Liu
,
J.
, and
Zhang
,
Y.
,
2018
, “
A Mechanics Model of Soft Network Materials With Periodic Lattices of Arbitrarily Shaped Filamentary Microstructures for Tunable Poisson’s Ratios
,”
ASME J. Appl. Mech.
,
85
(
5
), p.
051003
.
57.
Yan
,
D.
,
Chang
,
J.
,
Zhang
,
H.
,
Liu
,
J.
,
Song
,
H.
,
Xue
,
Z.
,
Zhang
,
F.
, and
Zhang
,
Y.
,
2020
, “
Soft Three-Dimensional Network Materials With Rational Bio-Mimetic Designs
,”
Nat. Commun.
,
11
(
1
), pp.
1
11
.
58.
Costello
,
G. A.
,
1997
,
Theory of Wire Rope
,
Springer Science & Business Media
,
New York
.
59.
Van Loenhout
,
M. T.
,
De Grunt
,
M.
, and
Dekker
,
C.
,
2012
, “
Dynamics of DNA Supercoils
,”
Science
,
338
(
6103
), pp.
94
97
.
60.
Qi
,
H.
,
Teo
,
K.
,
Lau
,
K.
,
Boyce
,
M.
,
Milne
,
W.
,
Robertson
,
J.
, and
Gleason
,
K.
,
2003
, “
Determination of Mechanical Properties of Carbon Nanotubes and Vertically Aligned Carbon Nanotube Forests Using Nanoindentation
,”
J. Mech. Phys. Solids
,
51
(
11–12
), pp.
2213
2237
.
61.
Zhao
,
Z.-L.
,
Zhao
,
H.-P.
,
Wang
,
J.-S.
,
Zhang
,
Z.
, and
Feng
,
X.-Q.
,
2014
, “
Mechanical Properties of Carbon Nanotube Ropes With Hierarchical Helical Structures
,”
J. Mech. Phys. Solids
,
71
, pp.
64
83
.
62.
Gao
,
Y.
,
Li
,
B.
,
Wang
,
J.
, and
Feng
,
X.-Q.
,
2021
, “
Fracture Toughness Analysis of Helical Fiber-Reinforced Biocomposites
,”
J. Mech. Phys. Solids
,
146
, p.
104206
.
63.
Yang
,
Z.
,
Zhai
,
Z.
,
Song
,
Z.
,
Wu
,
Y.
,
Liang
,
J.
,
Shan
,
Y.
,
Zheng
,
J.
,
Liang
,
H.
, and
Jiang
,
H.
,
2020
, “
Conductive and Elastic 3d Helical Fibers for Use in Washable and Wearable Electronics
,”
Adv. Mater.
,
32
(
10
), p.
1907495
.
64.
Mamidanna
,
A.
,
Song
,
Z.
,
Lv
,
C.
,
Lefky
,
C. S.
,
Jiang
,
H.
, and
Hildreth
,
O. J.
,
2016
, “
Printing Stretchable Spiral Interconnects Using Reactive Ink Chemistries
,”
ACS Appl. Mater. Interfaces
,
8
(
20
), pp.
12594
12598
.
65.
Jawed
,
M. K.
,
Da
,
F.
,
Joo
,
J.
,
Grinspun
,
E.
, and
Reis
,
P. M.
,
2014
, “
Coiling of Elastic Rods on Rigid Substrates
,”
Proc. Natl. Acad. Sci. U.S.A.
,
111
(
41
), pp.
14663
14668
.
66.
Jawed
,
M. K.
, and
Reis
,
P. M.
,
2016
, “
Deformation of a Soft Helical Filament in an Axial Flow at Low Reynolds Number
,”
Soft Matter
,
12
(
6
), pp.
1898
1905
.
67.
Jawed
,
M. K.
,
Brun
,
P.-T.
, and
Reis
,
P. M.
,
2015
, “
A Geometric Model for the Coiling of an Elastic Rod Deployed Onto a Moving Substrate
,”
ASME J. Appl. Mech.
,
82
(
12
), p.
121007
.
68.
Wallach
,
J.
, and
Gibson
,
L.
,
2001
, “
Mechanical Behavior of a Three-Dimensional Truss Material
,”
Int. J. Solids Struct.
,
38
(
40–41
), pp.
7181
7196
.
69.
Wu
,
Y.
, and
Yang
,
L.
,
2021
, “
Modeling and Analysis of Material Anisotropy-Topology Effects of 3D Cellular Structures Fabricated by Powder Bed Fusion Additive Manufacturing
,”
Int. J. Mech. Sci.
,
197
, p.
106325
.
70.
Schaedler
,
T. A.
,
Jacobsen
,
A. J.
,
Torrents
,
A.
,
Sorensen
,
A. E.
,
Lian
,
J.
,
Greer
,
J. R.
,
Valdevit
,
L.
, and
Carter
,
W. B.
,
2011
, “
Ultralight Metallic Microlattices
,”
Science
,
334
(
6058
), pp.
962
965
.
71.
Deshpande
,
V. S.
,
Fleck
,
N. A.
, and
Ashby
,
M. F.
,
2001
, “
Effective Properties of the Octet-Truss Lattice Material
,”
J. Mech. Phys. Solids
,
49
(
8
), pp.
1747
1769
.
72.
Meza
,
L. R.
,
Phlipot
,
G. P.
,
Portela
,
C. M.
,
Maggi
,
A.
,
Montemayor
,
L. C.
,
Comella
,
A.
,
Kochmann
,
D. M.
, and
Greer
,
J. R.
,
2017
, “
Reexamining the Mechanical Property Space of Three-Dimensional Lattice Architectures
,”
Acta Mater.
,
140
, pp.
424
432
.
73.
Phlipot
,
G. P.
, and
Kochmann
,
D. M.
,
2019
, “
A Quasicontinuum Theory for the Nonlinear Mechanical Response of General Periodic Truss Lattices
,”
J. Mech. Phys. Solids
,
124
, pp.
758
780
.
74.
Guo
,
H.-C.
,
Qiu
,
X.-M.
, and
Fang
,
D.-N.
,
2006
, “
Optimal Design of Two Lattice Materials and Their Effective Properties
,”
Int. J. Nonlinear Sci. Numer. Simul.
,
7
(
4
), pp.
393
398
.
75.
Valdevit
,
L.
,
Godfrey
,
S. W.
,
Schaedler
,
T. A.
,
Jacobsen
,
A. J.
, and
Carter
,
W. B.
,
2013
, “
Compressive Strength of Hollow Microlattices: Experimental Characterization, Modeling, and Optimal Design
,”
Mater. Res.
,
28
(
17
), pp.
2461
2473
.
76.
Wicks
,
N.
, and
Hutchinson
,
J. W.
,
2001
, “
Optimal Truss Plates
,”
Int. J. Solids Struct.
,
38
(
30–31
), pp.
5165
5183
.
77.
Hutchinson
,
R. G.
, and
Fleck
,
N. A.
,
2006
, “
The Structural Performance of the Periodic Truss
,”
J. Mech. Phys. Solids
,
54
(
4
), pp.
756
782
.
78.
Messner
,
M. C.
,
2016
, “
Optimal Lattice-Structured Materials
,”
J. Mech. Phys. Solids
,
96
, pp.
162
183
.
79.
O’Masta
,
M. R.
,
Dong
,
L.
,
St-Pierre
,
L.
,
Wadley
,
H.
, and
Deshpande
,
V. S.
,
2017
, “
The Fracture Toughness of Octet-Truss Lattices
,”
J. Mech. Phys. Solids
,
98
, pp.
271
289
.
80.
Miller
,
J.
,
Su
,
T.
,
Pabon
,
J.
,
Wicks
,
N.
,
Bertoldi
,
K.
, and
Reis
,
P. M.
,
2015
, “
Buckling of a Thin Elastic rod Inside a Horizontal Cylindrical Constraint
,”
Extreme Mech. Lett.
,
3
, pp.
36
44
.
81.
Miller
,
J.
,
Lazarus
,
A.
,
Audoly
,
B.
, and
Reis
,
P. M.
,
2014
, “
Shapes of a Suspended Curly Hair
,”
Phys. Rev. Lett.
,
112
(
6
), p.
068103
.
82.
Slepyan
,
L.
,
Krylov
,
V.
, and
Parnes
,
R.
,
2000
, “
Helical Inclusion in an Elastic Matrix
,”
J. Mech. Phys. Solids
,
48
(
4
), pp.
827
865
.
83.
Xu
,
F.
,
Potier-Ferry
,
M.
,
Belouettar
,
S.
, and
Cong
,
Y.
,
2014
, “
3D Finite Element Modeling for Instabilities in Thin Films on Soft Substrates
,”
Int. J. Solids Struct.
,
51
(
21–22
), pp.
3619
3632
.
84.
Xu
,
F.
,
Koutsawa
,
Y.
,
Potier-Ferry
,
M.
, and
Belouettar
,
S.
,
2015
, “
Instabilities in Thin Films on Hyperelastic Substrates by 3D Finite Elements
,”
Int. J. Solids Struct.
,
69
, pp.
71
85
.
85.
Dias
,
M. A.
, and
Audoly
,
B.
,
2015
, “
’Wunderlich, Meet Kirchhoff’: A General and Unified Description of Elastic Ribbons and Thin Rods
,”
J. Elast.
,
119
(
1
), pp.
49
66
.
86.
Dias
,
M. A.
, and
Audoly
,
B.
,
2014
, “
A Non-Linear Rod Model for Folded Elastic Strips
,”
J. Mech. Phys. Solids
,
62
, pp.
57
80
.
87.
Brun
,
P. T.
,
Audoly
,
B.
,
Ribe
,
N. M.
,
Eaves
,
T. S.
, and
Lister
,
J. R.
,
2015
, “
Liquid Ropes: A Geometrical Model for Thin Viscous Jet Instabilities
,”
Phys. Rev. Lett.
,
114
(
17
), p.
174501
.
88.
Dal
,
H.
,
Açıkgöz
,
K.
, and
Badienia
,
Y.
,
2021
, “
On the Performance of Isotropic Hyperelastic Constitutive Models for Rubber-Like Materials: A State of the Art Review
,”
ASME Appl. Mech. Rev.
,
73
(
2
), p.
020802
.
89.
Gross
,
A.
,
Pantidis
,
P.
,
Bertoldi
,
K.
, and
Gerasimidis
,
S.
,
2019
, “
Correlation Between Topology and Elastic Properties of Imperfect Truss-Lattice Materials
,”
J. Mech. Phys. Solids
,
124
, pp.
577
598
.
90.
Wang
,
P.
,
Yang
,
F.
,
Li
,
P.
,
Zheng
,
B.
, and
Fan
,
H.
,
2021
, “
Design and Additive Manufacturing of a Modified Face-Centered Cubic Lattice With Enhanced Energy Absorption Capability
,”
Extreme Mech. Lett.
,
47
, p.
101358
.
91.
Buehler
,
M. J.
, and
Ackbarow
,
T.
,
2007
, “
Fracture Mechanics of Protein Materials
,”
Mater. Today
,
10
(
9
), pp.
46
58
.
92.
Buehler
,
M.
,
Keten
,
S.
, and
Ackbarow
,
T.
,
2008
, “
Theoretical and Computational Hierarchical Nanomechanics of Protein Materials: Deformation and Fracture
,”
Prog. Mater. Sci.
,
53
(
8
), pp.
1101
1241
.
93.
Wallin
,
T.
,
Pikul
,
J.
, and
Shepherd
,
R.
,
2018
, “
3D Printing of Soft Robotic Systems
,”
Nat. Rev. Mater.
,
3
(
6
), pp.
84
100
.
94.
Capel
,
A. J.
,
Rimington
,
R. P.
,
Lewis
,
M. P.
, and
Christie
,
S. D.
,
2018
, “
3D Printing for Chemical, Pharmaceutical and Biological Applications
,”
Nat. Rev. Chem.
,
2
(
12
), pp.
422
436
.
95.
Kuang
,
X.
,
Chen
,
K.
,
Dunn
,
C. K.
,
Wu
,
J.
,
Li
,
V. C.
, and
Qi
,
H. J.
,
2018
, “
3D Printing of Highly Stretchable, Shape-Memory, and Self-Healing Elastomer Toward Novel 4D Printing
,”
ACS Appl. Mater. Interfaces
,
10
(
8
), pp.
7381
7388
.
96.
Li
,
V. C.-F.
,
Kuang
,
X.
,
Hamel
,
C. M.
,
Roach
,
D.
,
Deng
,
Y.
, and
Qi
,
H. J.
,
2019
, “
Cellulose Nanocrystals Support Material for 3D Printing Complexly Shaped Structures Via Multi-Materials-Multi-Methods Printing
,”
Addit. Manuf.
,
28
, pp.
14
22
.
97.
Lei
,
M.
,
Hong
,
W.
,
Zhao
,
Z.
,
Hamel
,
C.
,
Chen
,
M.
,
Lu
,
H.
, and
Qi
,
H. J.
,
2019
, “
3D Printing of Auxetic Metamaterials With Digitally Reprogrammable Shape
,”
ACS Appl. Mater. Interfaces
,
11
(
25
), pp.
22768
22776
.
98.
Timoshenko
,
S.
, and
Gere
,
J.
,
1961
,
Theory of Elastic Stability
,
McGraw-Hill
,
New York
.
99.
Love
,
A.
,
1927
, “
A Treatise on the Mathematical Theory of Elasticity, Cambridge, 1927
,” Reprinted by Dover Publications, New York, l944 and after.
100.
Su
,
Y.
,
Wu
,
J.
,
Fan
,
Z.
,
Hwang
,
K.-C.
,
Song
,
J.
,
Huang
,
Y.
, and
Rogers
,
J. A.
,
2012
, “
Postbuckling Analysis and Its Application to Stretchable Electronics
,”
J. Mech. Phys. Solids
,
60
(
3
), pp.
487
508
.
101.
Fan
,
Z.
,
Zhang
,
Y.
,
Ma
,
Q.
,
Zhang
,
F.
,
Fu
,
H.
,
Hwang
,
K.-C.
, and
Huang
,
Y.
,
2016
, “
A Finite Deformation Model of Planar Serpentine Interconnects for Stretchable Electronics
,”
Int. J. Solids Struct.
,
91
, pp.
46
54
.
102.
Li
,
K.
,
Chen
,
L.
,
Zhu
,
F.
, and
Huang
,
Y.
,
2021
, “
Thermal and Mechanical Analyses of Compliant Thermoelectric Coils for Flexible and Bio-Integrated Devices
,”
ASME J. Appl. Mech.
,
88
(
2
), p.
021011
.
103.
Audoly
,
B.
, and
Seffen
,
K. A.
,
2016
, “Buckling of Naturally Curved Elastic Strips: The Ribbon Model Makes a Difference,”
The Mechanics of Ribbons and Möbius Bands
,
R.
Fosdick
, and
E.
Fried
, eds.,
Springer
,
Dordrecht
, pp.
293
320
.
104.
Lestringant
,
C.
, and
Audoly
,
B.
,
2017
, “
Elastic Rods With Incompatible Strain: Macroscopic Versus Microscopic Buckling
,”
J. Mech. Phys. Solids
,
103
, pp.
40
71
.
105.
Fleck
,
N. A.
,
Deshpande
,
V. S.
, and
Ashby
,
M. F.
,
2010
, “
Micro-architectured Materials: Past, Present and Future
,”
Proc. Math. Phys. Eng. Sci.
,
466
(
2121
), pp.
2495
2516
.
106.
Maksym
,
G. N.
, and
Bates
,
J. H.
,
1997
, “
A Distributed Nonlinear Model of Lung Tissue Elasticity
,”
J. Appl. Physiol.
,
82
(
1
), pp.
32
41
.
107.
Vatankhah-Varnosfaderani
,
M.
,
Daniel
,
W. F.
,
Everhart
,
M. H.
,
Pandya
,
A. A.
,
Liang
,
H.
,
Matyjaszewski
,
K.
,
Dobrynin
,
A. V.
, and
Sheiko
,
S. S.
,
2017
, “
Mimicking Biological Stress–Strain Behaviour With Synthetic Elastomers
,”
Nature
,
549
(
7673
), pp.
497
501
.
108.
Morch
,
A.
,
Astruc
,
L.
,
Mayeur
,
O.
,
Witz
,
J.-F.
,
Lecomte-Grosbras
,
P.
, and
Brieu
,
M.
,
2020
, “
Is There Any Objective and Independent Characterization and Modeling of Soft Biological Tissues?
,”
J. Mech. Behav. Biomed. Mater.
,
110
, p.
103915
.
109.
Eskandari
,
M.
,
Arvayo
,
A. L.
, and
Levenstonik
,
M. E.
,
2018
, “
Mechanical Properties of the Airway Tree: Heterogeneous and Anisotropic Pseudoelastic and Viscoelastic Tissue Responses
,”
J. Appl. Physiol.
,
125
(
3
), pp.
878
888
.
You do not currently have access to this content.