Abstract

As 2D materials with subwavelength thicknesses, elastic metasurfaces show remarkable abilities to manipulate elastic waves at will through artificial boundary conditions. However, current elastic metasurfaces are still far away from arbitrary wave manipulations since they just play a role of phase compensator. Herein, we present the next generation of elastic metasurfaces by incorporating amplitude discontinuities as an additional degree of freedom. A general theory predicting target wave fields steered by metasurfaces is proposed by modifying the Huygens–Fresnel principle. As examples, two amplitude-shift metasurfaces concerning flexural waves in thin plates are carried out: one is to transform a cylindrical wave into a Gaussian beam by elaborating both amplitude and phase shifts, and the other one is to focus incident waves by metasurfaces of amplitude modulations only. These examples coincide well over theoretical calculations, numerical simulations, and experimental tests. This work may underlie the design of metasurfaces with complete control over guided elastic waves and may extend to more sophisticated applications, such as analog signal processing and holographic imaging.

References

1.
Croxford
,
A. J.
,
Wilcox
,
P. D.
,
Drinkwater
,
B. W.
, and
Konstantinidis
,
G.
,
2007
, “
Strategies for Guided-Wave Structural Health Monitoring
,”
Proc. R. Soc. A-Math. Phys. Eng. Sci.
,
463
(
2087
), pp.
2961
2981
. 10.1098/rspa.2007.0048
2.
Mitra
,
M.
, and
Gopalakrishnan
,
S.
,
2016
, “
Guided Wave Based Structural Health Monitoring: A Review
,”
Smart Mater. Struct.
,
25
(
5
), p.
053001
. 10.1088/0964-1726/25/5/053001
3.
Brule
,
S.
,
Javalaud
,
E. H.
,
Enoch
,
S.
, and
Guenneau
,
S.
,
2014
, “
Experiments on Seismic Metamaterials: Molding Surface Waves
,”
Phys. Rev. Lett.
,
112
(
13
), p.
133901
. 10.1103/PhysRevLett.112.133901
4.
Semblat
,
J. F.
, and
Pecker
,
A.
,
2009
,
Waves and Vibrations in Soils: Earthquakes, Traffic, Shocks, Construction Works
,
IUSS Press
,
Pavia
.
5.
White
,
P.
,
Clement
,
G.
, and
Hynynen
,
K.
,
2006
, “
Longitudinal and Shear Mode Ultrasound Propagation in Human Skull Bone
,”
Ultrasound Med. Biol.
,
32
(
7
), pp.
1085
1096
. 10.1016/j.ultrasmedbio.2006.03.015
6.
Tufail
,
Y.
,
Yoshihiro
,
A.
,
Pati
,
S.
,
Li
,
M. M.
, and
Tyler
,
W. J.
,
2011
, “
Ultrasonic Neuromodulation by Brain Stimulation With Transcranial Ultrasound
,”
Nat. Protoc.
,
6
(
9
), pp.
1453
1470
. 10.1038/nprot.2011.371
7.
Park
,
J.
,
Lee
,
D.
, and
Rho
,
J.
,
2020
, “
Recent Advances in Non-Traditional Elastic Wave Manipulation by Macroscopic Artificial Structures
,”
Appl. Sci.
,
10
(
2
), p.
547
. 10.3390/app10020547
8.
Goldsberry
,
B. M.
,
Wallen
,
S. P.
, and
Haberman
,
M. R.
,
2019
, “
Non-Reciprocal Wave Propagation in Mechanically-Modulated Continuous Elastic Metamaterials
,”
J. Acoust. Soc. Am.
,
146
(
1
), pp.
782
788
. 10.1121/1.5115019
9.
Nassar
,
H.
,
Chen
,
H.
,
Norris
,
A. N.
,
Haberman
,
M. R.
, and
Huang
,
G. L.
,
2017
, “
Non-Reciprocal Wave Propagation in Modulated Elastic Metamaterials
,”
Proc. R. Soc. A-Math. Phys. Eng. Sci.
,
473
(
2202
), p.
20170188
. 10.1098/rspa.2017.0188
10.
Zhu
,
R.
,
Liu
,
X. N.
,
Hu
,
G. K.
,
Sun
,
C. T.
, and
Huang
,
G. L.
,
2014
, “
Negative Refraction of Elastic Waves at the Deep-Subwavelength Scale in a Single-Phase Metamaterial
,”
Nat. Commun.
,
5
(
1
), p.
5510
. 10.1038/ncomms6510
11.
Liu
,
Y.
,
Su
,
X.
, and
Sun
,
C. T.
,
2015
, “
Broadband Elastic Metamaterial With Single Negativity by Mimicking Lattice Systems
,”
J. Mech. Phys. Solids
,
74
, pp.
158
174
. 10.1016/j.jmps.2014.09.011
12.
Oh
,
J. H.
,
Seung
,
H. M.
, and
Kim
,
Y. Y.
,
2017
, “
Doubly Negative Isotropic Elastic Metamaterial for Sub-Wavelength Focusing: Design and Realization
,”
J. Sound Vibr.
,
410
(
8
), pp.
169
186
. 10.1016/j.jsv.2017.08.027
13.
Chen
,
Y. Y.
, and
Huang
,
G. L.
,
2015
, “
Active Elastic Metamaterials for Subwavelength Wave Propagation Control
,”
Acta Mech. Sin.
,
31
(
3
), pp.
349
363
. 10.1007/s10409-015-0402-0
14.
Chen
,
J. S.
,
Su
,
W. J.
,
Cheng
,
Y.
,
Li
,
W. C.
, and
Lin
,
C. Y.
,
2019
, “
A Metamaterial Structure Capable of Wave Attenuation and Concurrent Energy Harvesting
,”
J. Intell. Mater. Syst. Struct.
,
30
(
20
), pp.
2973
2981
. 10.1177/1045389X19880023
15.
Yoo
,
Y. J.
,
Zheng
,
H. Y.
,
Kim
,
Y. J.
,
Rhee
,
J. Y.
,
Kang
,
J. H.
,
Kim
,
K. W.
,
Cheong
,
H.
,
Kim
,
Y. H.
, and
Lee
,
Y. P.
,
2014
, “
Flexible and Elastic Metamaterial Absorber for Low Frequency, Based on Small-Size Unit Cell
,”
Appl. Phys. Lett.
,
105
(
4
), p.
041902
. 10.1063/1.4885095
16.
Chen
,
H. T.
,
Taylor
,
A. J.
, and
Yu
,
N.
,
2016
, “
A Review of Metasurfaces: Physics and Applications
,”
Rep. Prog. Phys.
,
79
(
7
), p.
076401
. 10.1088/0034-4885/79/7/076401
17.
Zhu
,
H.
, and
Semperlotti
,
F.
,
2016
, “
Anomalous Refraction of Acoustic Guided Waves in Solids With Geometrically Tapered Metasurfaces
,”
Phys. Rev. Lett.
,
117
(
3
), p.
034302
. 10.1103/PhysRevLett.117.034302
18.
Kim
,
M. S.
,
Lee
,
W. R.
,
Kim
,
Y. Y.
, and
Oh
,
J. H.
,
2018
, “
Transmodal Elastic Metasurface for Broad Angle Total Mode Conversion
,”
Appl. Phys. Lett.
,
112
(
24
), p.
241905
. 10.1063/1.5032157
19.
Su
,
X.
,
Lu
,
Z.
, and
Norris
,
A. N.
,
2018
, “
Elastic Metasurfaces for Splitting SV- and P-Waves in Elastic Solids
,”
J. Appl. Phys.
,
123
(
9
), p.
091701
. 10.1063/1.5007731
20.
Liu
,
Y.
,
Liang
,
Z.
,
Liu
,
F.
,
Diba
,
O.
,
Lamb
,
A.
, and
Li
,
J.
,
2017
, “
Source Illusion Devices for Flexural Lamb Waves Using Elastic Metasurfaces
,”
Phys. Rev. Lett.
,
119
(
3
), p.
034301
. 10.1103/PhysRevLett.119.034301
21.
Li
,
S.
,
Xu
,
J.
, and
Tang
,
J.
,
2018
, “
Tunable Modulation of Refracted Lamb Wave Front Facilitated by Adaptive Elastic Metasurfaces
,”
Appl. Phys. Lett.
,
112
(
2
), p.
021903
. 10.1063/1.5011675
22.
Assouar
,
B.
,
Liang
,
B.
,
Wu
,
Y.
,
Li
,
Y.
,
Cheng
,
J. C.
, and
Jing
,
Y.
,
2018
, “
Acoustic Metasurfaces
,”
Nat. Rev. Mater.
,
3
(
12
), pp.
460
472
. 10.1038/s41578-018-0061-4
23.
Yu
,
N.
,
Genevet
,
P.
,
Kats
,
M. A.
,
Aieta
,
F.
,
Tetienne
,
J. P.
,
Capasso
,
F.
, and
Gaburro
,
Z.
,
2011
, “
Light Propagation With Phase Discontinuities: Generalized Laws of Reflection and Refraction
,”
Science
,
334
(
6054
), pp.
333
337
. 10.1126/science.1210713
24.
Díaz-Rubio
,
A.
, and
Tretyakov
,
S. A.
,
2017
, “
Acoustic Metasurfaces for Scattering-Free Anomalous Reflection and Refraction
,”
Phys. Rev. B
,
96
(
12
), p.
125409
. 10.1103/PhysRevB.96.125409
25.
Chen
,
M.
,
Abdo-Sánchez
,
E.
,
Epstein
,
A.
, and
Eleftheriades
,
G. V.
,
2018
, “
Theory, Design, and Experimental Verification of a Reflectionless Bianisotropic Huygens’ Metasurface for Wide-Angle Refraction
,”
Phys. Rev. B
,
97
(
12
), p.
125433
. 10.1103/PhysRevB.97.125433
26.
Estakhri
,
N. M.
, and
Alù
,
A.
,
2016
, “
Wave-Front Transformation With Gradient Metasurfaces
,”
Phys. Rev. X.
,
6
(
4
), p.
041008
. 10.1103/PhysRevX.6.041008
27.
Pfeiffer
,
C.
, and
Grbic
,
A.
,
2013
, “
Metamaterial Huygens’ Surfaces: Tailoring Wave Fronts With Reflectionless Sheets
,”
Phys. Rev. Lett.
,
110
(
19
), p.
197401
. 10.1103/PhysRevLett.110.197401
28.
Ma
,
G. C.
,
Yang
,
M.
,
Xiao
,
S. W.
,
Yang
,
Z. Y.
, and
Sheng
,
P.
,
2014
, “
Acoustic Metasurface With Hybrid Resonances
,”
Nat. Mater.
,
13
(
9
), pp.
873
878
. 10.1038/nmat3994
29.
Li
,
Y.
, and
Assouar
,
M. B.
,
2016
, “
Acoustic Metasurface-Based Perfect Absorber With Deep Subwavelength Thickness
,”
Appl. Phys. Lett.
,
108
(
6
), p.
063502
. 10.1063/1.4941338
30.
Seren
,
H. R.
,
Keiser
,
G. R.
,
Cao
,
L.
,
Zhang
,
J.
,
Strikwerda
,
A. C.
,
Fan
,
K.
,
Metcalfe
,
G. D.
,
Wraback
,
M.
,
Zhang
,
X.
, and
Averitt
,
R. D.
,
2014
, “
Optically Modulated Multiband Terahertz Perfect Absorber
,”
Adv. Opt. Mater.
,
2
(
12
), pp.
1221
1226
. 10.1002/adom.201400197
31.
Chen
,
J.
,
Xiao
,
J.
,
Lisevych
,
D.
,
Shakouri
,
A.
, and
Fan
,
Z.
,
2018
, “
Deep-Subwavelength Control of Acoustic Waves in an Ultra-Compact Metasurface Lens
,”
Nat. Commun.
,
9
(
1
), p.
4920
. 10.1038/s41467-018-07315-6
32.
West
,
P. R.
,
Stewart
,
J. L.
,
Kildishev
,
A. V.
,
Shalaev
,
V. M.
,
Shkunov
,
V. V.
,
Strohkendl
,
F.
,
Zakharenkov
,
R. K.
,
Dodds
,
R. K.
, and
Byren
,
R.
,
2014
, “
All-Dielectric Subwavelength Metasurface Focusing Lens
,”
Opt. Express.
,
22
(
21
), pp.
26212
26221
. 10.1364/OE.22.026212
33.
Yu
,
N.
,
Aieta
,
F.
,
Genevet
,
P.
,
Kats
,
M. A.
,
Gaburro
,
Z.
, and
Capasso
,
F.
,
2012
, “
A Broadband, Background-Free Quarter-Wave Plate Based on Plasmonic Metasurfaces
,”
Nano Lett.
,
12
(
12
), pp.
6328
6333
. 10.1021/nl303445u
34.
Sun
,
W. J.
,
He
,
Q. O.
,
Hao
,
J. M.
, and
Zhou
,
L.
,
2011
, “
A Transparent Metamaterial to Manipulate Electromagnetic Wave Polarizations
,”
Opt. Lett.
,
36
(
6
), pp.
927
929
. 10.1364/OL.36.000927
35.
Zheng
,
G.
,
Mühlenbernd
,
H.
,
Kenney
,
M.
,
Li
,
G.
,
Zentgraf
,
T.
, and
Zhang
,
S.
,
2015
, “
Metasurface Holograms Reaching 80% Efficiency
,”
Nat. Nanotechnol.
,
10
(
4
), pp.
308
312
. 10.1038/nnano.2015.2
36.
Ni
,
X.
,
Kildishev
,
A. V.
, and
Shalaev
,
V. M.
,
2013
, “
Metasurface Holograms for Visible Light
,”
Nat. Commun.
,
4
(
1
), p.
2807
. 10.1038/ncomms3807
37.
Tian
,
Y.
,
Wei
,
Q.
,
Cheng
,
Y.
, and
Liu
,
X.
,
2017
, “
Acoustic Holography Based on Composite Metasurface With Decoupled Modulation of Phase and Amplitude
,”
Appl. Phys. Lett.
,
110
(
19
), p.
191901
. 10.1063/1.4983282
38.
Lee
,
H.
,
Lee
,
J. K.
,
Seung
,
H. M.
, and
Kim
,
Y. Y.
,
2018
, “
Mass-Stiffness Substructuring of an Elastic Metasurface for Full Transmission Beam Steering
,”
J. Mech. Phys. Solids
,
112
, pp.
577
593
. 10.1016/j.jmps.2017.11.025
39.
Zhang
,
J.
,
Su
,
X.
,
Liu
,
Y.
,
Zhao
,
Y.
,
Jing
,
Y.
, and
Hu
,
N.
,
2019
, “
Metasurface Constituted by Thin Composite Beams to Steer Flexural Waves in Thin Plates
,”
Int. J. Solids Struct.
,
162
(
1
), pp.
14
20
. 10.1016/j.ijsolstr.2018.11.025
40.
Cao
,
L.
,
Yang
,
Z.
,
Xu
,
Y.
,
Fan
,
S. W.
,
Zhu
,
Y.
,
Chen
,
Z.
,
Li
,
Y.
, and
Assouar
,
B.
,
2020
, “
Flexural Wave Absorption by Lossy Gradient Elastic Metasurface
,”
J. Mech. Phys. Solids
,
143
, p.
104052
. 10.1016/j.jmps.2020.104052
41.
Born
,
M.
, and
Wolf
,
E.
,
2013
,
Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light
,
Elsevier
,
New York
.
42.
Zhu
,
J.
,
Liu
,
Y.
,
Liang
,
Z.
,
Chen
,
T.
, and
Li
,
J.
,
2018
, “
Elastic Waves in Curved Space: Mimicking a Wormhole
,”
Phys. Rev. Lett.
,
121
(
23
), p.
234301
. 10.1103/PhysRevLett.121.234301
43.
Serdyuk
,
V. M.
, and
Titovitsky
,
J. A.
,
2010
, “
A Simple Analytic Approximation for the Refracted Field at Gaussian Beam Incidence Upon a Boundary of Absorbing Medium
,”
J. Electromagnet. Anal. Appl.
,
2
(
11
), pp.
640
648
. 10.4236/jemaa.2010.211084
44.
Li
,
B.
,
Hu
,
Y.
,
Chen
,
J.
,
Su
,
G.
,
Liu
,
Y.
,
Zhao
,
M.
, and
Li
,
Z.
,
2020
, “
Efficient Asymmetric Transmission of Elastic Waves in Thin Plates With Lossless Metasurfaces
,”
Phys. Rev. Appl.
,
14
(
5
), p.
054029
. 10.1103/PhysRevApplied.14.054029
45.
Siviloglou
,
G. A.
,
Broky
,
J.
,
Dogariu
,
A.
, and
Christodoulides
,
D. N.
,
2007
, “
Observation of Accelerating Airy Beams
,”
Phys. Rev. Lett.
,
99
(
21
), p.
213901
. 10.1103/PhysRevLett.99.213901
46.
Chen
,
D. C.
,
Zhu
,
X. F.
,
Wu
,
D. J.
, and
Liu
,
X. J.
,
2019
, “
Broadband Airy-Like Beams by Coded Acoustic Metasurfaces
,”
Appl. Phys. Lett.
,
114
(
5
), p.
053504
. 10.1063/1.5080202
47.
Jin
,
Y.
,
Kumar
,
R.
,
Poncelet
,
O.
,
Mondain-Monval
,
O.
, and
Brunet
,
T.
,
2019
, “
Flat Acoustics With Soft Gradient-Index Metasurfaces
,”
Nat. Commun.
,
10
(
1
), p.
143
. 10.1038/s41467-018-07990-5
48.
Zhou
,
Y.
,
Zheng
,
H.
,
Kravchenko
,
I. I.
, and
Valentine
,
J.
,
2020
, “
Flat Optics for Image Differentiation
,”
Nat. Photon.
,
14
(
5
), pp.
316
323
. 10.1038/s41566-020-0591-3
You do not currently have access to this content.