Abstract

The development of multi-stable structural forms has attracted considerable attention in the design of architected multi-materials, metamaterials, and morphing structures, as a result of some unusual properties such as negative stiffness and, possibly, negative Poisson's ratio. Multi-stability is achieved through a morphological change of shape upon loading, and in doing so multi-stable structures undergo transitions from one equilibrium state to another. This paper investigates the structural performance of the negative stiffness honeycomb (NSH) metamaterials made of double curved beams which are emerging in various applications such as sensors, actuators, and lightweight impact protective structures with structural tunability and recoverability. An analytical treatment is pursued using the Euler–Lagrange theorem and the stability of the honeycomb has been studied. Based on a static analysis of the nonlinear elastic system, the developed tangent stiffness matrix and ensuing deformation curve were assessed through multiple phases of deformation. The closed-form solution was in good agreement with the numerical finite element (FE) model at different bistability ratios. It was shown that the bistability ratio had a pronounced effect on the overall response of the honeycomb and the desired negativity in the stiffness matrix could be achieved with high bistability ratios.

References

1.
Daynes
,
S.
,
Potter
,
K. D.
, and
Weaver
,
P. M.
,
2008
, “
Bistable Prestressed Buckled Laminates
,”
Compos. Sci. Technol.
,
68
(
15–16
), pp.
3431
3437
. 10.1016/j.compscitech.2008.09.036
2.
Jeong
,
H. Y.
,
Lee
,
E.
,
Ha
,
S.
,
Kim
,
N.
, and
Jun
,
Y. C.
,
2019
, “
Multistable Thermal Actuators Via Multimaterial 4D Printing
,”
Adv. Mater. Technol.
,
4
(
3
), pp.
1
7
. 10.1002/admt.201800495
3.
Street
,
T.
, and
Seffen
,
K. A.
,
2007
, “
‘Morphing’ Bistable Orthotropic Elliptical Shallow Shells
,”
Proc. R. Soc. A Math. Phys. Eng. Sci.
,
463
(
2077
), pp.
67
83
. 10.1098/rspa.2006.1750
4.
Gibson
,
L. J.
, and
Ashby
,
M. F.
,
2001
,
Cellular Solids Structure and Properties
, 2nd ed.,
Cambridge University Press
,
Cambridge
.
5.
Tancogne-Dejean
,
T.
,
Spierings
,
A. B.
, and
Mohr
,
D.
,
2016
, “
Additively-Manufactured Metallic Micro-Lattice Materials for High Specific Energy Absorption Under Static and Dynamic Loading
,”
Acta Mater.
,
116
, pp.
14
28
. 10.1016/j.actamat.2016.05.054
6.
Gibson
,
L.
, and
Ashby
,
M. F.
,
1997
,
Cellular Solids
, 2nd ed.,
Cambridge University Press
,
Cambridge, UK
.
7.
Hu
,
L. L.
,
Zhou
,
M. Z.
, and
Deng
,
H.
,
2018
, “
Dynamic Crushing Response of Auxetic Honeycombs Under Large Deformation: Theoretical Analysis and Numerical Simulation
,”
Thin-Walled Struct.
,
131
, pp.
373
384
. 10.1016/j.tws.2018.04.020
8.
Okumura
,
D.
,
Ohno
,
N.
, and
Noguchi
,
C.
,
2002
, “
Post-Buckling Analysis of Elastic Honeycombs Subject to in-Plane Biaxial Compression
,”
Int. J. Solids Struct. Sci.
,
39
(
13–14
), pp.
3487
3503
. 10.1016/S0020-7683(02)00165-8
9.
Zheng
,
Z.
,
Yu
,
J.
, and
Li
,
J.
,
2005
, “
Dynamic Crushing of 2D Cellular Structures: A Finite Element Study
,”
Int. J. Impact Eng.
,
32
(
1–4
), pp.
650
664
. 10.1016/j.ijimpeng.2005.05.007
10.
Hu
,
L.
,
You
,
F.
, and
Yu
,
T.
,
2013
, “
Effect of Cell-Wall Angle on the In-Plane Crushing Behaviour of Hexagonal Honeycombs
,”
Mater. Des.
,
46
, pp.
511
523
. 10.1016/j.matdes.2012.10.050
11.
Hu
,
L. L.
, and
Yu
,
T. X.
,
2013
, “
Mechanical Behavior of Hexagonal Honeycombs Under Low-Velocity Impact—Theory and Simulations
,”
Int. J. Solids Struct.
,
50
(
20–21
), pp.
3152
3165
. 10.1016/j.ijsolstr.2013.05.017
12.
Hu
,
L. L.
, and
Yu
,
T. X.
,
2010
, “
Dynamic Crushing Strength of Hexagonal Honeycombs
,”
Int. J. Impact Eng.
,
37
(
5
), pp.
467
474
. 10.1016/j.ijimpeng.2009.12.001
13.
Hou
,
B.
,
Zhao
,
H.
,
Pattofatto
,
S.
,
Liu
,
J. G.
, and
Li
,
Y. L.
,
2012
, “
Inertia Effects on the Progressive Crushing of Aluminium Honeycombs Under Impact Loading
,”
Int. J. Solids Struct.
,
49
(
19–20
), pp.
2754
2762
. 10.1016/j.ijsolstr.2012.05.005
14.
Hou
,
B.
,
Pattofatto
,
S.
,
Li
,
Y. L.
, and
Zhao
,
H.
,
2011
, “
Impact Behavior of Honeycombs Under Combined Shear-Compression. Part II: Analysis
,”
Int. J. Solids Struct.
,
48
(
5
), pp.
687
697
. 10.1016/j.ijsolstr.2010.11.005
15.
Zou
,
Z.
,
Reid
,
S. R.
,
Tan
,
P. J.
,
Li
,
S.
, and
Harrigan
,
J. J.
,
2009
, “
Dynamic Crushing of Honeycombs and Features of Shock Fronts
,”
Int. J. Impact Eng.
,
36
(
1
), pp.
165
176
. 10.1016/j.ijimpeng.2007.11.008
16.
Ouyang
,
S.
,
Deng
,
Z.
, and
Hou
,
X.
,
2018
, “
Stress Concentration in Octagonal Honeycombs Due to Defects
,”
Compos. Struct.
,
204
, pp.
814
821
. 10.1016/j.compstruct.2018.07.087
17.
Emam
,
S. A.
,
2002
, “
A Theoretical and Experimental Study of Nonlinear Dynamics of Buckled Beams
,”
Ph.D. thesis
,
Virginia Polytechnic Institute and State University
.
18.
Nayfeh
,
A. H.
, and
Emam
,
S. A.
,
2008
, “
Exact Solution and Stability of Postbuckling Configurations of Beams
,”
Nonlinear Dyn.
,
54
(
4
), pp.
395
408
. 10.1007/s11071-008-9338-2
19.
Li
,
S. R.
,
Teng
,
Z. C.
, and
Zhou
,
Y. H.
,
2004
, “
Free Vibration of Heated Euler-Bernoulli Beams With Thermal Postbuckling Deformations
,”
J. Therm. Stress.
,
27
(
9
), pp.
843
856
. 10.1080/01495730490486352
20.
Sun
,
S.
,
An
,
N.
,
Wang
,
G.
,
Li
,
M.
, and
Zhou
,
J.
,
2019
, “
Snap-Back Induced Hysteresis in an Elastic Mechanical Metamaterial Under Tension
,”
Appl. Phys. Lett.
,
115
(
9
), p.
091901
. 10.1063/1.5119275
21.
Ren
,
C.
,
Yang
,
D.
, and
Qin
,
H.
,
2018
, “
Mechanical Performance of Multidirectional Buckling-Based Negative Stiffness Metamaterials: An Analytical and Numerical Study
,”
Materials
,
11
(
7
), p.
1078
. 10.3390/ma11071078
22.
Rafsanjani
,
A.
,
Akbarzadeh
,
A.
, and
Pasini
,
D.
,
2015
, “
Snapping Mechanical Metamaterials Under Tension
,”
Adv. Mater.
,
27
(
39
), pp.
5931
5935
. 10.1002/adma.201502809
23.
Chen
,
Y.
, and
Jin
,
L.
,
2020
, “
Snapping-Back Buckling of Wide Hyperelastic Columns
,”
Extrem. Mech. Lett.
,
34
, p.
100600
. 10.1016/j.eml.2019.100600
24.
Sareh
,
P.
,
Chermprayong
,
P.
,
Emmanuelli
,
M.
,
Nadeem
,
H.
, and
Kovac
,
M.
,
2018
, “
Rotorigami: A Rotary Origami Protective System for Robotic Rotorcraft
,”
Sci. Robot.
,
3
(
22
), pp.
1
13
. 10.1126/scirobotics.aah5228
25.
Mooney
,
J. G.
, and
Johnson
,
E. N.
,
2013
, “
A Collision-Resilient Flying Robot
,”
J. F. Robot.
,
31
(
4
), pp.
496
509
. 10.1002/rob.21495
26.
Alonso-Mora
,
J.
,
Naegeli
,
T.
,
Siegwart
,
R.
, and
Beardsley
,
P.
,
2015
, “
Collision Avoidance for Aerial Vehicles in Multi-Agent Scenarios
,”
Auton. Robots
,
39
(
1
), pp.
101
121
. 10.1007/s10514-015-9429-0
27.
Lv
,
C.
,
Krishnaraju
,
D.
,
Konjevod
,
G.
,
Yu
,
H.
, and
Jiang
,
H.
,
2014
, “
Origami Based Mechanical Metamaterials
,”
Sci. Rep.
,
4
(
1
), pp. 1–6. 10.1038/srep05979
28.
Sareh
,
P.
,
2019
, “
The Least Symmetric Crystallographic Derivative of the Developable Double Corrugation Surface: Computational Design Using Underlying Conic and Cubic Curves
,”
Mater. Des.
,
183
, p.
108128
. 10.1016/j.matdes.2019.108128
29.
Liu
,
K.
,
Tachi
,
T.
, and
Paulino
,
G. H.
,
2019
, “
Invariant and Smooth Limit of Discrete Geometry Folded From Bistable Origami Leading to Multistable Metasurfaces
,”
Nat. Commun.
,
10
(
1
), pp.
1
10
. 10.1038/s41467-019-11935-x
30.
Cazottes
,
P.
,
Fernandes
,
A.
,
Pouget
,
J.
, and
Hafez
,
M.
,
2009
, “
Bistable Buckled Beam: Modeling of Actuating Force and Experimental Validations
,”
ASME J. Mech. Des.
,
131
(
10
), p.
1010010
. 10.1115/1.3179003
31.
Camescasse
,
B.
,
Fernandes
,
A.
, and
Pouget
,
J.
,
2013
, “
Bistable Buckled Beam: Elastica Modeling and Analysis of Static Actuation
,”
Int. J. Solids Struct.
,
50
(
19
), pp.
2881
2893
. 10.1016/j.ijsolstr.2013.05.005
32.
Correa
,
D. M.
,
Klatt
,
T.
,
Cortes
,
S.
,
Haberman
,
M.
,
Kovar
,
D.
, and
Seepersad
,
C.
,
2015
, “
Negative Stiffness Honeycombs for Recoverable Shock Isolation
,”
Rapid Prototyp. J.
,
21
(
2
), pp.
193
200
. 10.1108/RPJ-12-2014-0182
33.
Goldsberry
,
B. M.
, and
Haberman
,
M. R.
,
2018
, “
Negative Stiffness Honeycombs as Tunable Elastic Metamaterials
,”
J. Appl. Phys.
,
123
(
9
), p.
091711
. 10.1063/1.5011400
34.
Vangbo
,
M.
,
1998
, “
An Analytical Analysis of a Compressed Bistable Buckled Beam
,”
Sens. Actuators, A
,
69
(
3
), pp.
212
216
. 10.1016/S0924-4247(98)00097-1
35.
Qiu
,
J.
,
2003
, “
An Electrothermally-Actuated Bistable MEMS Relay for Power Applications
,”
PhD Thesis
,
Massachusetts Institute of Technology
, p.
94
.
36.
Qiu
,
J.
,
Lang
,
J. H.
, and
Slocum
,
A. H.
,
2004
, “
A Curved-Beam Bistable Mechanism
,”
J. Microelectromechanical Syst.
,
13
(
2
), pp.
137
146
. 10.1109/JMEMS.2004.825308
37.
Bazant
,
P. Z.
, and
Cedolin
,
L.
,
2010
,
Stability of Structures
, 4th ed.,
World Scientific Publishing Co. Pte. Ltd.
,
London
.
38.
Correa
,
D. M.
,
Seepersad
,
C. C.
, and
Haberman
,
M. R.
,
2015
, “
Mechanical Design of Negative Stiffness Honeycomb Materials
,”
Integr. Mater. Manuf. Innov.
,
4
(
1
), pp.
165
175
. 10.1186/s40192-015-0038-8
39.
Fabrication
,
S. F.
,
International
,
A.
,
Freeform
,
S.
,
Symposium
,
F.
,
Additive
,
A.
, and
Conference
,
M.
,
2017
, “
Additively Manufactured Conformal Negative Stiffness Honeycombs
,”
Solid Free. Fabr. Symp., D. A. Debeau and C. C. Seepersad
,
Department of Mechanical Engineering, The University of Texas at Austin
,
Austin, TX
,
Aug. 7–9
, pp.
2170
2187
.
You do not currently have access to this content.