Abstract

The dynamic behavior of sandwich columns with aluminum face-sheets and hexagonal honeycomb core under axial low-velocity impact is investigated experimentally and theoretically. In the impact tests, two typical competing cases of deformation, i.e., core shear-curling (CS-Cu) and local denting-plastic hinge (LD-PH), were observed following the first-order or higher-order global buckling. The deformation process, permanent deformation, cushioning property, energy dissipation efficiency, and factors affecting the competition of CS-Cu and LD-PH were compared and discussed in detail. It is found that, if CS-Cu occurs instead of LD-PH, an axially impacted sandwich column may perform better in both cushioning and efficiently dissipating residual energy. The theoretical analysis is carried out by extending the existing quasi-static global buckling theory of sandwich columns. A good agreement between the oscillatory plateau on the measured force–time curve and the predicted critical plastic global buckling load is found for the strain rate-insensitive face-sheet material.

References

1.
Allen
,
H. G.
,
1969
,
Analysis and Design of Structural Sandwich Panels
,
Pergamon Press
,
Oxford
.
2.
Gibson
,
L. J.
, and
Ashby
,
M. F.
,
1997
,
Cellular Solids: Structure and Properties
,
Cambridge University Press
,
Cambridge
.
3.
Sun
,
Y.
, and
Li
,
Q.
,
2018
, “
Dynamic Compressive Behaviour of Cellular Materials: A Review of Phenomenon, Mechanism and Modelling
,”
Int. J. Impact Eng.
,
112
, pp.
74
115
. 10.1016/j.ijimpeng.2017.10.006
4.
Sun
,
G.
,
Huo
,
X.
,
Chen
,
D.
, and
Li
,
Q.
,
2017
, “
Experimental and Numerical Study on Honeycomb Sandwich Panels Under Bending and In-panel Compression
,”
Mater. Des.
,
133
, pp.
154
168
. 10.1016/j.matdes.2017.07.057
5.
Zhu
,
F.
,
Zhao
,
L.
,
Lu
,
G.
, and
Wang
,
Z.
,
2008
, “
Deformation and Failure of Blast-Loaded Metallic Sandwich Panels—Experimental Investigations
,”
Int. J. Impact Eng.
,
35
(
8
), pp.
937
951
. 10.1016/j.ijimpeng.2007.11.003
6.
Wang
,
T.
,
Qin
,
Q.
,
Wang
,
M.
,
Yu
,
W.
,
Wang
,
J.
,
Zhang
,
J.
, and
Wang
,
T.
,
2017
, “
Blast Response of Geometrically Asymmetric Metal Honeycomb Sandwich Plate: Experimental and Theoretical Investigations
,”
Int. J. Impact Eng.
,
105
, pp.
24
38
. 10.1016/j.ijimpeng.2016.10.009
7.
Ashby
,
M. F.
,
Evans
,
A. G.
,
Fleck
,
N. A.
,
Gibson
,
L. J.
,
Hutchinson
,
J. W.
, and
Wadley
,
H. N. G.
,
2000
,
Metal Foams: A Design Guide
,
Butterworth Heinemann
,
Boston, MA
.
8.
Deshpande
,
V. S.
, and
Fleck
,
N. A.
,
2000
, “
Isotropic Constitutive Models for Metallic Foams
,”
J. Mech. Phys. Solids
,
48
(
6-7
), pp.
1253
1283
. 10.1016/S0022-5096(99)00082-4
9.
Sun
,
Y.
,
Li
,
Q.
,
Lowe
,
T.
,
McDonald
,
S. A.
, and
Withers
,
P. J.
,
2016
, “
Investigation of Strain-Rate Effect on the Compressive Behaviour of Closed-Cell Aluminium Foam by 3D Image-Based Modelling
,”
Mater. Des.
,
89
, pp.
215
224
. 10.1016/j.matdes.2015.09.109
10.
Wang
,
M.
,
Qin
,
Q.
, and
Wang
,
T.
,
2017
, “
On Physically Asymmetric Sandwich Plates With Metal Foam Core Subjected to Blast Loading: Dynamic Response and Optimal Design
,”
Acta Mech.
,
228
(
9
), pp.
3265
3283
. 10.1007/s00707-017-1870-z
11.
Ji
,
W.
, and
Waas
,
A. M.
,
2017
, “
Dynamic Failure of a Sandwich Structure Subjected to an In-lane Axial Impact
,”
Compos. Struct.
,
180
(
Supplement C
), pp.
751
759
. 10.1016/j.compstruct.2017.08.024
12.
Fleck
,
N. A.
, and
Sridhar
,
I.
,
2002
, “
End Compression of Sandwich Columns
,”
Compos. Part A Appl. Sci. Manuf.
,
33
(
3
), pp.
353
359
. 10.1016/S1359-835X(01)00118-X
13.
Lei
,
H.
,
Yao
,
K.
,
Wen
,
W.
,
Zhou
,
H.
, and
Fang
,
D.
,
2016
, “
Experimental and Numerical Investigation on the Crushing Behavior of Sandwich Composite Under Edgewise Compression Loading
,”
Compos. B Eng.
,
94
, pp.
34
44
. 10.1016/j.compositesb.2016.03.049
14.
Cote
,
F.
,
Biagi
,
R.
,
Bart-Smith
,
H.
, and
Deshpande
,
V. S.
,
2007
, “
Structural Response of Pyramidal Core Sandwich Columns
,”
Int. J. Solids Struct.
,
44
(
10
), pp.
3533
3556
. 10.1016/j.ijsolstr.2006.10.004
15.
Li
,
M.
,
Wu
,
L.
,
Ma
,
L.
,
Wang
,
B.
, and
Guan
,
Z.
,
2011
, “
Structural Response of All-Composite Pyramidal Truss Core Sandwich Columns in End Compression
,”
Compos. Struct.
,
93
(
8
), pp.
1964
1972
. 10.1016/j.compstruct.2011.03.004
16.
Xiong
,
J.
,
Ma
,
L.
,
Wu
,
L.
,
Liu
,
J.
, and
Vaziri
,
A.
,
2011
, “
Mechanical Behavior and Failure of Composite Pyramidal Truss Core Sandwich Columns
,”
Compos. B Eng.
,
42
(
4
), pp.
938
945
. 10.1016/j.compositesb.2010.12.021
17.
Yin
,
S.
,
Wu
,
L.
, and
Nutt
,
S.
,
2014
, “
In-Plane Compression of Hollow Composite Pyramidal Lattice Sandwich Columns
,”
J. Compos. Mater.
,
48
(
11
), pp.
1337
1346
. 10.1177/0021998313485309
18.
Chen
,
Y.
,
Zhang
,
L.
,
Zhao
,
Y.
,
He
,
R.
,
Ai
,
S.
,
Tang
,
L.
, and
Fang
,
D.
,
2019
, “
Mechanical Behaviors of C/SiC Pyramidal Lattice Core Sandwich Panel Under In-plane Compression
,”
Compos. Struct.
,
214
, pp.
103
113
. 10.1016/j.compstruct.2019.01.085
19.
Biagi
,
R.
, and
Bart-Smith
,
H.
,
2012
, “
In-plane Column Response of Metallic Corrugated Core Sandwich Panels
,”
Int. J. Solids Struct.
,
49
(
26
), pp.
3901
3914
. 10.1016/j.ijsolstr.2012.08.015
20.
Lim
,
J.-Y.
,
Kim
,
J.-S.
,
Kim
,
J.
, and
Bart-Smith
,
H.
,
2015
, “
Dynamic Effects on the Lightweight Design of Metallic Core Sandwich Columns
,”
J. Mech. Sci. Technol.
,
29
(
4
), pp.
1335
1340
. 10.1007/s12206-015-0301-0
21.
Lim
,
J.-Y.
, and
Bart-Smith
,
H.
,
2014
, “
Theoretical Approach on the Dynamic Global Buckling Response of Metallic Corrugated Core Sandwich Columns
,”
Int. J. Non Linear Mech.
,
65
, pp.
14
31
. 10.1016/j.ijnonlinmec.2014.04.007
22.
Lim
,
J.-Y.
, and
Bart-Smith
,
H.
,
2015
, “
Dynamic Buckling Response of Long Plates for the Prediction of Local Plate Buckling of Corrugated Core Sandwich Columns
,”
ASME J. Appl. Mech.
,
82
(
11
), p.
111008
. 10.1115/1.4031279
23.
Lim
,
J.-Y.
, and
Bart-Smith
,
H.
,
2015
, “
An Analytical Model for the Face Wrinkling Failure Prediction of Metallic Corrugated Core Sandwich Columns in Dynamic Compression
,”
Int. J. Mech. Sci.
,
92
, pp.
290
303
. 10.1016/j.ijmecsci.2015.01.002
24.
Xiao
,
D.
,
Dong
,
Z.
,
Li
,
Y.
,
Wu
,
W.
, and
Fang
,
D.
,
2019
, “
Compression Behavior of the Graded Metallic Auxetic Reentrant Honeycomb: Experiment and Finite Element Analysis
,”
Mater. Sci. Eng. A Struct. Mater.
,
758
, pp.
163
171
. 10.1016/j.msea.2019.04.116
25.
Wu
,
Q.
,
Vaziri
,
A.
,
Asl
,
M. E.
,
Ghosh
,
R.
,
Gao
,
Y.
,
Wei
,
X.
,
Ma
,
L.
,
Xiong
,
J.
, and
Wu
,
L.
,
2019
, “
Lattice Materials With Pyramidal Hierarchy: Systematic Analysis and Three Dimensional Failure Mechanism Maps
,”
J. Mech. Phys. Solids
,
125
, pp.
112
144
. 10.1016/j.jmps.2018.12.006
26.
Liu
,
J.
,
Li
,
C.
,
Deng
,
S.
,
Liu
,
J.
, and
Huang
,
W.
,
2020
, “
The Edgewise Compressive Behavior and Failure Mechanism of the Composite Y-Frame Core Sandwich Column
,”
Polym. Test
,
81
, p.
106188
. 10.1016/j.polymertesting.2019.106188
27.
Vinson
,
J. R.
,
1986
, “
Optimum Design of Composite Honeycomb Sandwich Panels Subjected to Uniaxial Compression
,”
AIAA J.
,
24
(
10
), pp.
1690
1696
. 10.2514/3.9502
28.
Wicks
,
N.
, and
Hutchinson
,
J. W.
,
2001
, “
Optimal Truss Plates
,”
Int. J. Solids Struct.
,
38
(
30
), pp.
5165
5183
. 10.1016/S0020-7683(00)00315-2
29.
Jones
,
N.
,
2012
,
Structural Impact
,
Cambridge University
,
Cambridge
.
30.
Jones
,
N.
,
1995
, “
Quasi-static Analysis of Structural Impact Damage
,”
J. Constr. Steel Res.
,
33
(
3
), pp.
151
177
. 10.1016/0143-974X(94)00002-Y
31.
Olsson
,
R.
,
2000
, “
Mass Criterion for Wave Controlled Impact Response of Composite Plates
,”
Compos. Part A Appl. Sci. Manuf.
,
31
(
8
), pp.
879
887
. 10.1016/S1359-835X(00)00020-8
32.
Olsson
,
R.
,
2001
, “
Analytical Prediction of Large Mass Impact Damage in Composite Laminates
,”
Compos. Part A Appl. Sci. Manuf.
,
32
(
9
), pp.
1207
1215
. 10.1016/S1359-835X(01)00073-2
33.
Yu
,
J. L.
,
Wang
,
E. H.
,
Li
,
J. R.
, and
Zheng
,
Z. J.
,
2008
, “
Static and Low-Velocity Impact Behavior of Sandwich Beams With Closed-Cell Aluminum-Foam Core in Three-Point Bending
,”
Int. J. Impact Eng.
,
35
(
8
), pp.
885
894
. 10.1016/j.ijimpeng.2008.01.006
You do not currently have access to this content.