Abstract

To model the mechanical behavior of granular materials, a reliable description of the material properties is indispensable. Individual grains are usually not perfectly spherical. In batteries, for instance, lithium nickel manganese cobalt oxide (NMC) is a frequently used material, consisting out of particles with possibly ellipsoidal like shapes. As particles may plastically deform under increasing stresses, the paper presents a theoretical model for the normal contact force of elastoplastic ellipsoidal bodies for the use in the context of mechanical discrete element method (DEM). The model can be considered as extension of the elastic, elastic-plastic, fully plastic Thornton model by using a more general description to incorporate elliptical contact areas. The focus is on a normal contact force description as continuous function of time for all regimes, elastic, elastoplastic, and fully plastic loading, as well as unloading from elastoplastic loading, while the evolution of the plastic contact area is not considered here. All underlying formulae to describe the force-displacement relationship for the static contact problem are derived, partly based on finite element analysis (FEA). To verify the new model, FEAs are performed and their results compared with the model predictions.

References

1.
Cundall
,
P.
, and
Strack
,
O.
,
1979
, “
A Discrete Numerical Model for Granular Assemblies
,”
Géotechnique
,
29
(
1
), pp.
47
65
. 10.1680/geot.1979.29.1.47
2.
Cheng
,
E. J.
,
Hong
,
K.
,
Taylor
,
N. J.
,
Choe
,
H.
,
Wolfenstine
,
J.
, and
Sakamoto
,
J.
,
2017
, “
Mechanical and Physical Properties of LiNi0.33Mn0.3Co0.33O2 (NMC)
,”
J. Eur. Ceram. Soc.
,
37
(
9
), pp.
3213
3217
. 10.1016/j.jeurceramsoc.2017.03.048
3.
Giménez
,
C. S.
,
Finke
,
B.
,
Schilde
,
C.
,
Froböse
,
L.
, and
Kwade
,
A.
,
2019
, “
Numerical Simulation of the Behavior of Lithium-Ion Battery Electrodes During the Calendaring Process Via the Discrete Element Method
,”
Powder. Technol.
,
349
, pp.
1
11
. 10.1016/j.powtec.2019.03.020
4.
Ott
,
J.
,
Völker
,
B.
,
Gan
,
Y.
,
McMeeking
,
R. M.
, and
Kamlah
,
M.
,
2013
, “
A Micromechanical Model for Effective Conductivity in Granular Electrode Structures
,”
Acta. Mech. Sin.
,
29
(
5
), pp.
682
698
. 10.1007/s10409-013-0070-x
5.
Antartis
,
D.
,
Dillon
,
S.
, and
Chasiotis
,
I.
,
2015
, “
Effect of Porosity on Electrochemical and Mechanical Properties of Composite Li-Ion Anodes
,”
J. Compos. Mater.
,
49
(
15
), pp.
1849
1862
. 10.1177/0021998314568653
6.
Zheng
,
H.
,
Tan
,
L.
,
Liu
,
G.
,
Song
,
X.
, and
Battaglia
,
V. S.
,
2012
, “
Calendering Effects on the Physical and Electrochemical Properties of LiINi1/3Mn1/3Co1/3]O2 Cathode
,”
J. Power. Sources.
,
208
, pp.
52
57
. 10.1016/j.jpowsour.2012.02.001
7.
Haselrieder
,
W.
,
Ivanov
,
S.
,
Christen
,
D. K.
,
Bockholt
,
H.
, and
Kwade
,
A.
,
2013
, “
Impact of the Calendering Process on the Interfacial Structure and the Related Electrochemical Performance of Secondary Lithium-Ion Batteries
,”
ECS. Trans.
,
50
(
26
), pp.
59
70
. 10.1149/05026.0059ecst
8.
Schmidt
,
D.
,
Kamlah
,
M.
, and
Knoblauch
,
V.
,
2018
, “
Highly Densified NCM-Cathodes for High Energy Li-Ion Batteries: Microstructural Evolution During Densification and Its Influence on the Performance of the Electrodes
,”
J. Energy Storage
,
17
, pp.
213
223
. 10.1016/j.est.2018.03.002
9.
Schmidt
,
D.
,
Kleinbach
,
M.
,
Kamlah
,
M.
, and
Knoblauch
,
V.
,
2018
, “
Investigations on the Microstructure-Property Relationship of NCM-Based Electrodes for Lithium-Ion Batteries
,”
Practical Metallography
,
55
(
11
), pp.
741
761
. 10.3139/147.110528
10.
Hertz
,
H.
,
1881
, “
Über Die Berührung Fester Elastischer Körper
,”
J. die reine und angewandte Math.
,
1882
(
92
), pp.
156
171
. 10.1515/crll.1882.92.156
11.
Thakur
,
S. C.
,
Morrissey
,
J. P.
,
Sun
,
J.
,
Chen
,
J. F.
, and
Ooi
,
J. Y.
,
2014
, “
Micromechanical Analysis of Cohesive Granular Materials Using the Discrete Element Method with An Adhesive Elasto-Plastic Contact Model
,”
Granular Matter
,
16
(
3
), pp.
383
400
. 10.1007/s10035-014-0506-4
12.
Pasha
,
M.
,
Dogbe
,
S.
,
Hare
,
C.
,
Hassanpour
,
A.
, and
Ghadiri
,
M.
,
2014
, “
A Linear Model of Elasto-Plastic and Adhesive Contact Deformation
,”
Granular Matter
,
16
(
1
), pp.
151
162
. 10.1007/s10035-013-0476-y
13.
Walton
,
O. R.
, and
Braun
,
R. L.
,
1986
, “
Viscosity, Granular-Temperature, and Stress Calculations for Shearing Assemblies of Inelastic, Frictional Disks
,”
J. Rheol.
,
30
(
5
), pp.
949
980
. 10.1122/1.549893
14.
Luding
,
S.
,
2008
, “
Cohesive, Frictional Powders: Contact Models for Tension
,”
Granular Matter
,
10
(
4
), pp.
235
246
. 10.1007/s10035-008-0099-x
15.
Vu-Quoc
,
L.
, and
Zhang
,
X.
,
1999
, “
An Elastoplastic Contact Force–Displacement Model in the Normal Direction: Displacement–Driven Version
,”
Proc. R. Soc. London. Ser. A: Math., Phys. Eng. Sci.
,
455
(
1991
), pp.
4013
4044
. 10.1098/rspa.1999.0488
16.
Müller
,
P.
, and
Tomas
,
J.
,
2012
, “
Compression Behavior of Moist Spherical Zeolite 4a Granules
,”
Chem. Eng. Technol.
,
35
(
9
), pp.
1677
1684
. 10.1002/ceat.201200245
17.
Hardy
,
C.
,
Baronet
,
C. N.
, and
Tordion
,
G. V.
,
1971
, “
The Elasto-Plastic Indentation of a Half-Space by a Rigid Sphere
,”
Int. J. Num. Methods Eng.
,
3
(
4
), pp.
451
462
. 10.1002/nme.1620030402
18.
Mesarovic
,
S. D.
, and
Fleck
,
N. A.
,
1999
, “
Spherical Indentation of Elastic–Plastic Solids
,”
Proc. R. Soc. London. Ser. A: Math., Phys. Eng. Sci.
,
455
(
1987
), pp.
2707
2728
. 10.1098/rspa.1999.0423
19.
Sinclair
,
G.
,
Follansbee
,
P.
, and
Johnson
,
K.
,
1985
, “
Quasi-Static Normal Indentation of An Elasto-Plastic Half-Space by a Rigid Sphere—II. Results
,”
Int. J. Solids. Struct.
,
21
(
8
), pp.
865
888
. 10.1016/0020-7683(85)90039-3
20.
Follansbee
,
P.
, and
Sinclair
,
G.
,
1984
, “
Quasi-Static Normal Indentation of An Elasto-Plastic Half-Space by a Rigid Sphere—I: Analysis
,”
Int. J. Solids. Struct.
,
20
(
1
), pp.
81
91
. 10.1016/0020-7683(84)90078-7
21.
Hill
,
R.
,
Storåkers
,
B.
, and
Zdunek
,
A. B.
,
1989
, “
A Theoretical Study of the Brinell Hardness Test
,”
Proc. R. Soc. London. Ser. A: Math., Phys. Eng. Sci.
,
423
(
1865
), pp.
301
330
. 10.1098/rspa.1989.0056
22.
Kral
,
E. R.
,
Komvopoulos
,
K.
, and
Bogy
,
D. B.
,
1993
, “
Elastic-Plastic Finite Element Analysis of Repeated Indentation of a Half-Space by a Rigid Sphere
,”
ASME J. Appl. Mech.
,
60
(
4
), pp.
829
841
. 10.1115/1.2900991
23.
Yu
,
M.
,
Moran
,
B.
, and
Keer
,
L. M.
,
1993
, “
A Direct Analysis of Two-Dimensional Elastic-Plastic Rolling Contact
,”
ASME J. Tribol.
,
115
(
2
), pp.
227
236
. 10.1115/1.2920996
24.
Yu
,
M. M.-H.
,
Moran
,
B.
, and
Keer
,
L. M.
,
1995
, “
A Direct Analysis of Three-Dimensional Elastic-Plastic Rolling Contact
,”
ASME J. Tribol.
,
117
(
2
), pp.
234
243
. 10.1115/1.2831236
25.
Kogut
,
L.
, and
Etsion
,
I.
,
2002
, “
Elastic-Plastic Contact Analysis of a Sphere and a Rigid Flat
,”
ASME J. Appl. Mech.
,
69
(
5
), pp.
657
662
. 10.1115/1.1490373
26.
Jackson
,
R. L.
, and
Green
,
I.
,
2005
, “
A Finite Element Study of Elasto-Plastic Hemispherical Contact Against a Rigid Flat
,”
ASME J. Tribol.
,
127
(
2
), pp.
343
354
. 10.1115/1.1866166
27.
Thornton
,
C.
,
Cummins
,
S. J.
, and
Cleary
,
P. W.
,
2017
, “
On Elastic-Plastic Normal Contact Force Models, With and Without Adhesion
,”
Powder. Technol.
,
315
, pp.
339
346
. 10.1016/j.powtec.2017.04.008
28.
Mesarovic
,
S. D.
, and
Fleck
,
N. A.
,
2000
, “
Frictionless Indentation of Dissimilar Elastic–Plastic Spheres
,”
Int. J. Solids. Struct.
,
37
(
46–47
), pp.
7071
7091
. 10.1016/S0020-7683(99)00328-5
29.
Thornton
,
C.
,
1997
, “
Coefficient of Restitution for Collinear Collisions of Elastic-Perfectly Plastic Spheres
,”
ASME J. Appl. Mech.
,
64
(
2
), pp.
383
386
. 10.1115/1.2787319
30.
Martin
,
C.
,
2003
, “
Unloading of Powder Compacts and Their Resulting Tensile Strength
,”
Acta. Mater.
,
51
(
15
), pp.
4589
4602
. 10.1016/S1359-6454(03)00296-9
31.
Thornton
,
C.
, and
Ning
,
Z.
,
1998
, “
A Theoretical Model for the Stick/Bounce Behaviour of Adhesive, Elastic-Plastic Spheres
,”
Powder. Technol.
,
99
(
2
), pp.
154
162
. 10.1016/S0032-5910(98)00099-0
32.
Tabor
,
D.
,
1951
,
Hardness of Metals
,
Oxford University Press
,
Oxford
.
33.
Li
,
L.
,
Wu
,
C.
, and
Thornton
,
C.
,
2001
, “
A Theoretical Model for the Contact of Elastoplastic Bodies
,”
Proc. Inst. Mech. Eng., Part C: J. Mech. Eng. Sci.
,
216
(
4
), pp.
421
431
. 10.1243/0954406021525214
34.
Chung
,
J. C.
,
2010
, “
Elastic–Plastic Contact Analysis of An Ellipsoid and a Rigid Flat
,”
Tribol. Int.
,
43
(
1–2
), pp.
491
502
. 10.1016/j.triboint.2009.08.005
35.
Lin
,
L. P.
, and
Lin
,
J. F.
,
2007
, “
An Elliptical Elastic-Plastic Microcontact Model Developed for An Ellipsoid in Contact With a Smooth Rigid Flat
,”
ASME J. Tribol.
,
129
(
4
), pp.
772
782
. 10.1115/1.2768077
36.
Jeng
,
Y.-R.
, and
Wang
,
P.-Y.
,
2003
, “
An Elliptical Microcontact Model Considering Elastic, Elastoplastic, and Plastic Deformation
,”
ASME J. Tribol.
,
125
(
2
), pp.
232
240
. 10.1115/1.1537744
37.
Jamari
,
J.
, and
Schipper
,
D. J.
,
2006
, “
An Elastic–Plastic Contact Model of Ellipsoid Bodies
,”
Tribology Lett.
,
21
(
3
), pp.
262
271
. 10.1007/s11249-006-9038-3
38.
Jamari
,
J.
, and
Schipper
,
D.
,
2007
, “
Plastic Deformation and Contact Area of An Elastic–Plastic Contact of Ellipsoid Bodies After Unloading
,”
Tribol. Int.
,
40
(
8
), pp.
1311
1318
. 10.1016/j.triboint.2007.02.015
39.
Horng
,
J. H.
,
1998
, “
An Elliptic Elastic-Plastic Asperity Microcontact Model for Rough Surfaces
,”
ASME J. Tribol.
,
120
(
1
), pp.
82
88
. 10.1115/1.2834194
40.
Reussner
,
H.
,
1977
, “
Druckflächenbelastung Und Oberflächenverschiebung Im Wälzkontakt Von Rotationskörpen
,” PhD thesis,
University of Karlsruhe
.
41.
Moes
,
H.
, Lubrication and beyond. University of Twente Lecture Notes code 115531.
42.
Johnson
,
K.
,
1985
,
Contact Mechanics
,
Cambridge University Press
,
Cambridge
.
43.
Hale
,
L. C.
,
1999
, “
Principles and Techniques for Designing Precision Machines
,” PhD thesis,
University of California
.
44.
Li
,
P.
,
Zhou
,
L.
,
Cui
,
F.
,
Wang
,
Q.
,
Guo
,
M.
,
Zhai
,
Y.
,
Li
,
Y.
, and
Hua
,
D.
,
2018
, “
Elasto-Plastic Analysis of the Contact Region Between a Rigid Ellipsoid and a Semi-Flat Surface
,”
Adv. Mech. Eng.
,
10
(
9
), p.
168781401879739
. 10.1177/1687814018797397
45.
Ghaednia
,
H.
,
Wang
,
X.
,
Saha
,
S.
,
Xu
,
Y.
,
Sharma
,
A.
, and
Jackson
,
R. L.
,
2017
, “
A Review of Elastic–Plastic Contact Mechanics
,”
ASME Appl. Mech. Rev.
,
69
(
6
), pp.
1
30
. 10.1115/1.4038187
46.
Harris
,
W. F.
,
2006
, “
Curvature of Ellipsoids and Other Surfaces
,”
Opht. Physiol. Opt.
,
26
(
5
), pp.
497
501
. 10.1111/j.1475-1313.2006.00382.x
47.
Wu
,
C.
,
Li
,
L.
, and
Thornton
,
C.
,
2003
, “
Rebound Behaviour of Spheres for Plastic Impacts
,”
Int. J. Impact Eng.
,
28
(
9
), pp.
929
946
. 10.1016/S0734-743X(03)00014-9
48.
Bower
,
A. F.
,
Fleck
,
N. A.
,
Needleman
,
A.
, and
Ogbonna
,
N.
,
1993
, “
Indentation of a Power Law Creeping Solid
,”
Proc. R. Soc. A: Math., Phys. Eng. Sci.
,
441
(
1911
), pp.
97
124
.
49.
Simulia
,
D. S.
,
2012
, “
Abaqus 6.12 documentation.
Providence, Rhode Island, US
,
261
.
50.
Struik
,
D. J.
,
1922
,
Grundzüge Der Mehrdimensionalen Differentialgeometrie
,
Springer Berlin Heidelberg
.
51.
Sackfield
,
A.
, and
Hills
,
D.
,
1983
, “
Some Useful Results in the Classical Hertz Contact Problem
,”
J. Strain Anal. Eng. Design
,
18
(
2
), pp.
101
105
. 10.1243/03093247V182101
52.
Thomas
,
H.
, and
Hoersch
,
V.
,
1930
, “
Stress Due to the Pressure of One Elastic Solid Upon Another
,”
University of Illinois, Engineering Experimental Station, Bulletin No. 212
.
53.
Müller
,
R.
,
2020
,
Modellierung, Analyse und Simulation elektrischer und mechanischer Systeme mit Maple™ und MapleSim™
,
Springer Fachmedien Wiesbaden
.
You do not currently have access to this content.