Abstract
To model the mechanical behavior of granular materials, a reliable description of the material properties is indispensable. Individual grains are usually not perfectly spherical. In batteries, for instance, lithium nickel manganese cobalt oxide (NMC) is a frequently used material, consisting out of particles with possibly ellipsoidal like shapes. As particles may plastically deform under increasing stresses, the paper presents a theoretical model for the normal contact force of elastoplastic ellipsoidal bodies for the use in the context of mechanical discrete element method (DEM). The model can be considered as extension of the elastic, elastic-plastic, fully plastic Thornton model by using a more general description to incorporate elliptical contact areas. The focus is on a normal contact force description as continuous function of time for all regimes, elastic, elastoplastic, and fully plastic loading, as well as unloading from elastoplastic loading, while the evolution of the plastic contact area is not considered here. All underlying formulae to describe the force-displacement relationship for the static contact problem are derived, partly based on finite element analysis (FEA). To verify the new model, FEAs are performed and their results compared with the model predictions.