Abstract
The virtual crack closure technique (VCCT) is a well-established method for determining energy release rates and stress intensity factors in homogeneous, isotropic materials. It has been implemented with four-noded, eight-noded, quarter-point, and other higher order elements. It is most convenient and accurate when used with eight-noded, isoparametric elements. VCCT produces less accurate results when used with quarter-point elements. Yet, this method continues to be employed with quarter-point elements. It is strongly recommended to use VCCT with regular eight-noded elements. Three examples will be presented to illustrate the inaccuracy when using quarter-point elements with VCCT.
Issue Section:
Research Papers
References
1.
Rybicki
, E. F.
, and Kanninen
, M. F.
, 1977
, “A Finite Element Calculation of Stress Intensity Factors by a Modified Crack Closure Integral
,” Eng. Fract. Mech.
, 9
(4
), pp. 931
–938
. 10.1016/0013-7944(77)90013-32.
Irwin
, G. R.
, 1958
, “Fracture,” Handbuch Der Physik
, Flügge
, S.
, ed., Springer
, Berlin
, pp. 551
–590
.3.
Ramamurthy
, T. S.
, Krishnamurthy
, T.
, Narayana
, K. B.
, Vijayakumar
, K.
, and Dattaguru
, B.
, 1986
, “Modified Crack Closure Integral Method With Quarter Point Elements
,” Mech. Res. Commun.
, 13
(4
), pp. 179
–186
. 10.1016/0093-6413(86)90016-94.
Raju
, I. S.
, 1987
, “Calculation of Strain-energy Release Rates with Higher Order and Singular Finite Elements
,” Eng. Fract. Mech.
, 28
(3
), pp. 251
–274
. 10.1016/0013-7944(87)90220-75.
Kuna
, M.
, 2013
, Finite Elements in Fracture Mechanics
, Springer
, Berlin
.6.
Krueger
, R.
, 2004
, “Virtual Crack Closure Technique: History, Approach, and Applications
,” ASME Appl. Mech. Rev.
, 57
(2
), pp. 109
–143
. 10.1115/1.15956777.
Beuth
, J. L.
, 1996
, “Separation of Crack Extension Modes in Orthotropic Delamination Models
,” Int. J. Fract.
, 77
(4
), pp. 305
–321
. 10.1007/BF000362498.
Oneida
, E. K.
, van der Meulen
, M. C. H.
, and Ingraffea
, A. R.
, 2015
, “Method for Calculating G, GI, and GII to Simulate Crack Growth in 2D, Multiple-Material Structures
,” Eng. Fract. Mech.
, 140
, pp. 106
–126
. 10.1016/j.engfracmech.2015.03.0339.
Banks-Sills
, L.
, and Farkash
, E.
, 2016
, “A Note on the Virtual Crack Closure Technique for an Interface Crack
,” Int. J. Fract.
, 201
, pp. 171
–180
. 10.1007/s10704-016-0120-z10.
Farkash
, E.
, and Banks-Sills
, L.
, 2017
, “Virtual Crack Closure Technique for An Interface Crack Between Two Transversely Isotropic Materials
,” Int. J. Fract.
, 205
, pp. 189
–202
. 10.1007/s10704-017-0190-611.
Barsoum
, R. S.
, 1974
, “Application of Quadratic Isoparametric Finite Elements in Linear Fracture Mechanics
,” Int. J. Fract.
, 10
(4
), pp. 603
–605
. 10.1007/BF0015526612.
Henshell
, R. D.
, and Shaw
, K. G.
, 1975
, “Crack Tip Finite Elements are Unnecessary
,” Int. J. Numer. Methods Eng.
, 9
(3
), pp. 495
–507
. 10.1002/nme.162009030213.
Banks-Sills
, L.
, and Bortman
, Y.
, 1984
, “Reappraisal of the Quarter-Point Quadrilateral Element in Linear Elastic Fracture Mechanics
,” Int. J. Fract.
, 25
(3
), pp. 169
–180
. 10.1007/BF0114083514.
Narayana
, K. B.
, Dattaguru
, B.
, Ramamurthy
, T.
, and Vijayakumar
, K.
, 1990
, “Modified Crack Closure Integral Using Six-Noded Isoparametric Quadrilateral Singular Elements
,” Eng. Fract. Mech.
, 36
(6
), pp. 945
–955
. 10.1016/0013-7944(90)90270-Q15.
Narayana
, K. B.
, and Dattaguru
, B.
, 1996
, “Certain Aspects Related to Computation by Modified Crack Closure Integral (MCCI)
,” Eng. Fract. Mech.
, 55
(2
), pp. 335
–339
. 10.1016/0013-7944(96)00017-316.
Sethuraman
, R.
, and Maiti
, S. K.
, 1988
, “Finite Element Based Computation of Strain Energy Release Rate by Modified Crack Closure Integral
,” Eng. Fract. Mech.
, 30
(2
), pp. 227
–231
. 10.1016/0013-7944(88)90226-317.
Pang
, H. L. J.
, Leggatt
, R. H.
, and Hellen
, T. K.
, 1990
, “Development of Linear Elastic Fracture Mechanics Benchmarks Tests,” Proceedings of the 5th International Conference on Numerical Methods in Fracture Mechanics
, J. R.
, Luxmore
and D. R. J.
Owen
, eds., Pineridge Press
, Swansea
, pp. 153
–168
.18.
Nairn
, J. A.
, 2011
, “Generalized Crack Closure Analysis for Elements With Arbitrarily-Placed Side Nodes and Consistent Nodal Forces
,” Int. J. Fract.
, 171
(1
), p. 11
. 10.1007/s10704-011-9622-x19.
Jimenez
, M. A.
, and Miravete
, A.
, 2004
, “Application of the Finite-Element Method to Predict the Onset of Delamination Growth
,” J. Compos. Mater.
, 38
(15
), pp. 1309
–1335
. 10.1177/002199830404273420.
Chen
, X.
, Lin
, Y.
, Liu
, X.
, and Lu
, G.-Q.
, 2005
, “Fracture Mechanics Analysis of the Effect of Substrate Flexibility on Solder Joint Reliability
,” Eng. Fract. Mech.
, 72
(17
), pp. 2628
–2646
. 10.1016/j.engfracmech.2005.02.00821.
Chiu
, T.-C.
, Lin
, H.-C.
, and Yang
, H.-C.
, 2008
, “Analysis of Flip-Chip Corner Delamination Using 3-D Virtual Crack Closure Technique
,” 2008 International Conference on Electronic Materials and Packaging
, F.
Shen-Li
, ed., IEEE
, Taipei
, pp. 157
–160
.22.
Chen
, Y.-R.
, Shen
, G.
, Yang
, H.-C.
, Lin
, H.-C.
, and Chiu
, T.-C.
, 2008
, “Three Dimensional Corner Delamination Analysis for Fan-Out Chip Scale Package,” 2008 International Conference on Electronic Packaging Technology & High Density Packaging
, Keyun
, B.
, Fei
, X.
, eds., IEEE
, Shanghai
, pp. 1
–5
.23.
Chiu
, T.-C.
, and Lin
, H.-C.
, 2009
, “Analysis of Stress Intensity Factors for Three-Dimensional Interface Crack Problems in Electronic Packages Using the Virtual Crack Closure Technique
,” Int. J. Fract.
, 156
(1
), pp. 75
–96
. 10.1007/s10704-009-9348-124.
Wahab
, M. A.
, 2015
, “Simulating Mode I Fatigue Crack Propagation in Adhesively-Bonded Composite Joints,” Fatigue and Fracture of Adhesively-Bonded Composite Joints
, Vassilopoulos
, A. P.
, ed., Woodhead Publishing
, Cambridge
, pp. 323
–344
.25.
Peixoto
, D. F.
, and de Castro
, P. M.
, 2016
, “Mixed Mode Fatigue Crack Propagation in a Railway Wheel Steel
,” Procedia Struct. Integrity
, 1
, pp. 150
–157
. 10.1016/j.prostr.2016.02.02126.
Khaldi
, M.
, Vivet
, A.
, Bourmaud
, A.
, Sereir
, Z.
, and Kada
, B.
, 2016
, “Damage Analysis of Composites Reinforced With Alfa Fibers: Viscoelastic Behavior and Debonding At the Fiber/Matrix Interface
,” J. Appl. Polym. Sci.
, 133
(31
), p. 43760
. 10.1002/app.4376027.
Burlayenko
, V. N.
, Altenbach
, H.
, Sadowski
, T.
, and Dimitrova
, S. D.
, 2016
, “Computational Simulations of Thermal Shock Cracking by the Virtual Crack Closure Technique in a Functionally Graded Plate
,” Comput. Mater. Sci.
, 116
, pp. 11
–21
. 10.1016/j.commatsci.2015.08.03828.
Salem
, M.
, Mohamed
, B.
, Belaïd
, M.
, and Belabbes
, B. B.
, 2018
, “Effect of the Angles of the Cracks of Corroded Plate in Bonded Composite Repair
,” Frattura ed Integrità Strutturale
, 12
(46
), pp. 113
–123
. 10.3221/IGF-ESIS.46.1229.
Di Stasio
, L.
, and Ayadi
, Z.
, 2019
, “Finite Element Solution of the Fiber/Matrix Interface Crack Problem: Convergence Properties and Mode Mixity of the Virtual Crack Closure Technique
,” Finite Elem. Anal. Des.
, 167
, p. 103332
. 10.1016/j.finel.2019.10333230.
Abaqus/CAE, Version 6.17
, Dassault Systèmes Simulia Corp
., Johnston, RI
.31.
Isida
, M.
, 1971
, “Effect of Width and Length on Stress Intensity Factors of Internally Cracked Plates Under Various Boundary Conditions
,” Int. J. Fract.
, 7
(3
), pp. 301
–316
. 10.1007/BF0018430632.
Williams
, J.
, 1989
, “End Corrections for Orthotropic DCB Specimens
,” Comput. Sci. Tech.
, 35
(4
), pp. 367
–376
. 10.1016/0266-3538(89)90058-433.
Wang
, Y.
, and Williams
, J. G.
, 1992
, “Corrections for Mode II Fracture Toughness Specimens of Composites Materials
,” Comput. Sci. Tech.
, 43
(3
), pp. 251
–256
. 10.1016/0266-3538(92)90096-LCopyright © 2020 by ASME
You do not currently have access to this content.