Abstract

The virtual crack closure technique (VCCT) is a well-established method for determining energy release rates and stress intensity factors in homogeneous, isotropic materials. It has been implemented with four-noded, eight-noded, quarter-point, and other higher order elements. It is most convenient and accurate when used with eight-noded, isoparametric elements. VCCT produces less accurate results when used with quarter-point elements. Yet, this method continues to be employed with quarter-point elements. It is strongly recommended to use VCCT with regular eight-noded elements. Three examples will be presented to illustrate the inaccuracy when using quarter-point elements with VCCT.

References

1.
Rybicki
,
E. F.
, and
Kanninen
,
M. F.
,
1977
, “
A Finite Element Calculation of Stress Intensity Factors by a Modified Crack Closure Integral
,”
Eng. Fract. Mech.
,
9
(
4
), pp.
931
938
. 10.1016/0013-7944(77)90013-3
2.
Irwin
,
G. R.
,
1958
, “Fracture,”
Handbuch Der Physik
,
Flügge
,
S.
, ed.,
Springer
,
Berlin
, pp.
551
590
.
3.
Ramamurthy
,
T. S.
,
Krishnamurthy
,
T.
,
Narayana
,
K. B.
,
Vijayakumar
,
K.
, and
Dattaguru
,
B.
,
1986
, “
Modified Crack Closure Integral Method With Quarter Point Elements
,”
Mech. Res. Commun.
,
13
(
4
), pp.
179
186
. 10.1016/0093-6413(86)90016-9
4.
Raju
,
I. S.
,
1987
, “
Calculation of Strain-energy Release Rates with Higher Order and Singular Finite Elements
,”
Eng. Fract. Mech.
,
28
(
3
), pp.
251
274
. 10.1016/0013-7944(87)90220-7
5.
Kuna
,
M.
,
2013
,
Finite Elements in Fracture Mechanics
,
Springer
,
Berlin
.
6.
Krueger
,
R.
,
2004
, “
Virtual Crack Closure Technique: History, Approach, and Applications
,”
ASME Appl. Mech. Rev.
,
57
(
2
), pp.
109
143
. 10.1115/1.1595677
7.
Beuth
,
J. L.
,
1996
, “
Separation of Crack Extension Modes in Orthotropic Delamination Models
,”
Int. J. Fract.
,
77
(
4
), pp.
305
321
. 10.1007/BF00036249
8.
Oneida
,
E. K.
,
van der Meulen
,
M. C. H.
, and
Ingraffea
,
A. R.
,
2015
, “
Method for Calculating G, GI, and GII to Simulate Crack Growth in 2D, Multiple-Material Structures
,”
Eng. Fract. Mech.
,
140
, pp.
106
126
. 10.1016/j.engfracmech.2015.03.033
9.
Banks-Sills
,
L.
, and
Farkash
,
E.
,
2016
, “
A Note on the Virtual Crack Closure Technique for an Interface Crack
,”
Int. J. Fract.
,
201
, pp.
171
180
. 10.1007/s10704-016-0120-z
10.
Farkash
,
E.
, and
Banks-Sills
,
L.
,
2017
, “
Virtual Crack Closure Technique for An Interface Crack Between Two Transversely Isotropic Materials
,”
Int. J. Fract.
,
205
, pp.
189
202
. 10.1007/s10704-017-0190-6
11.
Barsoum
,
R. S.
,
1974
, “
Application of Quadratic Isoparametric Finite Elements in Linear Fracture Mechanics
,”
Int. J. Fract.
,
10
(
4
), pp.
603
605
. 10.1007/BF00155266
12.
Henshell
,
R. D.
, and
Shaw
,
K. G.
,
1975
, “
Crack Tip Finite Elements are Unnecessary
,”
Int. J. Numer. Methods Eng.
,
9
(
3
), pp.
495
507
. 10.1002/nme.1620090302
13.
Banks-Sills
,
L.
, and
Bortman
,
Y.
,
1984
, “
Reappraisal of the Quarter-Point Quadrilateral Element in Linear Elastic Fracture Mechanics
,”
Int. J. Fract.
,
25
(
3
), pp.
169
180
. 10.1007/BF01140835
14.
Narayana
,
K. B.
,
Dattaguru
,
B.
,
Ramamurthy
,
T.
, and
Vijayakumar
,
K.
,
1990
, “
Modified Crack Closure Integral Using Six-Noded Isoparametric Quadrilateral Singular Elements
,”
Eng. Fract. Mech.
,
36
(
6
), pp.
945
955
. 10.1016/0013-7944(90)90270-Q
15.
Narayana
,
K. B.
, and
Dattaguru
,
B.
,
1996
, “
Certain Aspects Related to Computation by Modified Crack Closure Integral (MCCI)
,”
Eng. Fract. Mech.
,
55
(
2
), pp.
335
339
. 10.1016/0013-7944(96)00017-3
16.
Sethuraman
,
R.
, and
Maiti
,
S. K.
,
1988
, “
Finite Element Based Computation of Strain Energy Release Rate by Modified Crack Closure Integral
,”
Eng. Fract. Mech.
,
30
(
2
), pp.
227
231
. 10.1016/0013-7944(88)90226-3
17.
Pang
,
H. L. J.
,
Leggatt
,
R. H.
, and
Hellen
,
T. K.
,
1990
, “Development of Linear Elastic Fracture Mechanics Benchmarks Tests,”
Proceedings of the 5th International Conference on Numerical Methods in Fracture Mechanics
,
J. R.
,
Luxmore
and
D. R. J.
Owen
, eds.,
Pineridge Press
,
Swansea
, pp.
153
168
.
18.
Nairn
,
J. A.
,
2011
, “
Generalized Crack Closure Analysis for Elements With Arbitrarily-Placed Side Nodes and Consistent Nodal Forces
,”
Int. J. Fract.
,
171
(
1
), p.
11
. 10.1007/s10704-011-9622-x
19.
Jimenez
,
M. A.
, and
Miravete
,
A.
,
2004
, “
Application of the Finite-Element Method to Predict the Onset of Delamination Growth
,”
J. Compos. Mater.
,
38
(
15
), pp.
1309
1335
. 10.1177/0021998304042734
20.
Chen
,
X.
,
Lin
,
Y.
,
Liu
,
X.
, and
Lu
,
G.-Q.
,
2005
, “
Fracture Mechanics Analysis of the Effect of Substrate Flexibility on Solder Joint Reliability
,”
Eng. Fract. Mech.
,
72
(
17
), pp.
2628
2646
. 10.1016/j.engfracmech.2005.02.008
21.
Chiu
,
T.-C.
,
Lin
,
H.-C.
, and
Yang
,
H.-C.
,
2008
, “
Analysis of Flip-Chip Corner Delamination Using 3-D Virtual Crack Closure Technique
,”
2008 International Conference on Electronic Materials and Packaging
,
F.
Shen-Li
, ed.,
IEEE
,
Taipei
, pp.
157
160
.
22.
Chen
,
Y.-R.
,
Shen
,
G.
,
Yang
,
H.-C.
,
Lin
,
H.-C.
, and
Chiu
,
T.-C.
,
2008
, “Three Dimensional Corner Delamination Analysis for Fan-Out Chip Scale Package,”
2008 International Conference on Electronic Packaging Technology & High Density Packaging
,
Keyun
,
B.
,
Fei
,
X.
, eds.,
IEEE
,
Shanghai
, pp.
1
5
.
23.
Chiu
,
T.-C.
, and
Lin
,
H.-C.
,
2009
, “
Analysis of Stress Intensity Factors for Three-Dimensional Interface Crack Problems in Electronic Packages Using the Virtual Crack Closure Technique
,”
Int. J. Fract.
,
156
(
1
), pp.
75
96
. 10.1007/s10704-009-9348-1
24.
Wahab
,
M. A.
,
2015
, “Simulating Mode I Fatigue Crack Propagation in Adhesively-Bonded Composite Joints,”
Fatigue and Fracture of Adhesively-Bonded Composite Joints
,
Vassilopoulos
,
A. P.
, ed.,
Woodhead Publishing
,
Cambridge
, pp.
323
344
.
25.
Peixoto
,
D. F.
, and
de Castro
,
P. M.
,
2016
, “
Mixed Mode Fatigue Crack Propagation in a Railway Wheel Steel
,”
Procedia Struct. Integrity
,
1
, pp.
150
157
. 10.1016/j.prostr.2016.02.021
26.
Khaldi
,
M.
,
Vivet
,
A.
,
Bourmaud
,
A.
,
Sereir
,
Z.
, and
Kada
,
B.
,
2016
, “
Damage Analysis of Composites Reinforced With Alfa Fibers: Viscoelastic Behavior and Debonding At the Fiber/Matrix Interface
,”
J. Appl. Polym. Sci.
,
133
(
31
), p.
43760
. 10.1002/app.43760
27.
Burlayenko
,
V. N.
,
Altenbach
,
H.
,
Sadowski
,
T.
, and
Dimitrova
,
S. D.
,
2016
, “
Computational Simulations of Thermal Shock Cracking by the Virtual Crack Closure Technique in a Functionally Graded Plate
,”
Comput. Mater. Sci.
,
116
, pp.
11
21
. 10.1016/j.commatsci.2015.08.038
28.
Salem
,
M.
,
Mohamed
,
B.
,
Belaïd
,
M.
, and
Belabbes
,
B. B.
,
2018
, “
Effect of the Angles of the Cracks of Corroded Plate in Bonded Composite Repair
,”
Frattura ed Integrità Strutturale
,
12
(
46
), pp.
113
123
. 10.3221/IGF-ESIS.46.12
29.
Di Stasio
,
L.
, and
Ayadi
,
Z.
,
2019
, “
Finite Element Solution of the Fiber/Matrix Interface Crack Problem: Convergence Properties and Mode Mixity of the Virtual Crack Closure Technique
,”
Finite Elem. Anal. Des.
,
167
, p.
103332
. 10.1016/j.finel.2019.103332
30.
Abaqus/CAE, Version 6.17
,
Dassault Systèmes Simulia Corp
.,
Johnston, RI
.
31.
Isida
,
M.
,
1971
, “
Effect of Width and Length on Stress Intensity Factors of Internally Cracked Plates Under Various Boundary Conditions
,”
Int. J. Fract.
,
7
(
3
), pp.
301
316
. 10.1007/BF00184306
32.
Williams
,
J.
,
1989
, “
End Corrections for Orthotropic DCB Specimens
,”
Comput. Sci. Tech.
,
35
(
4
), pp.
367
376
. 10.1016/0266-3538(89)90058-4
33.
Wang
,
Y.
, and
Williams
,
J. G.
,
1992
, “
Corrections for Mode II Fracture Toughness Specimens of Composites Materials
,”
Comput. Sci. Tech.
,
43
(
3
), pp.
251
256
. 10.1016/0266-3538(92)90096-L
You do not currently have access to this content.