Abstract

Magnetic elastomers (MEs) respond to an applied magnetic field through magnetomechanical coupling, where the mechanical properties of the MEs change with magnetic field strength. These phenomena have been mostly studied under homogenous magnetic fields due to the simplicity. In this work, the effects of the magnetic field gradient on the mechanical properties and the response of the MEs was examined. MEs are made by embedding carbonyl iron microparticles (CI) into a polydimethylsiloxane (PDMS) matrix, which is later rendered porous. The influence of the CI concentration was investigated by manipulating four different samples with CI/PDMS weight ratios of 0.2, 0.6, 1.0, and 1.4. An analytical method was proposed to further understand the interactions of the magnetic field gradient and the material’s response. The proposed theory was later verified with experimental results from compression tests in the presence of different magnetic fields. The proposed theoretical framework and experimental methods can be used to improve the design of MEs in the future.

References

1.
Perales-Martínez
,
I. A.
,
Palacios-Pineda
,
L. M.
,
Lozano-Sánchez
,
L. M.
,
Martínez-Romero
,
O.
,
Puente-Cordova
,
J. G.
, and
Elías-Zúñiga
,
A.
,
2017
, “
Enhancement of a Magnetorheological PDMS Elastomer With Carbonyl Iron Particles
,”
Polym. Test
,
57
, pp.
78
86
. 10.1016/j.polymertesting.2016.10.029
2.
Wu
,
H.
,
Zhu
,
L.
, and
Torchilin
,
V. P.
,
2013
, “
PH-Sensitive Poly(histidine)-PEG/DSPE-PEG Co-Polymer Micelles for Cytosolic Drug Delivery
,”
Biomaterials
,
34
(
4
), pp.
1213
1222
. 10.1016/j.biomaterials.2012.08.072
3.
Gandhi
,
A.
,
Paul
,
A.
,
Sen
,
S. O.
, and
Sen
,
K. K.
,
2015
, “
Studies on Thermoresponsive Polymers: Phase Behaviour, Drug Delivery and Biomedical Applications
,”
Asian J. Pharmaceutical Sci.
,
10
(
2
), pp.
99
107
.
4.
Timko
,
B. P.
,
Arruebo
,
M.
,
Shankarappa
,
S. A.
,
McAlvin
,
J. B.
,
Okonkwo
,
O. S.
,
Mizrahi
,
B.
,
Stefanescu
,
C. F.
,
Gomez
,
L.
,
Zhu
,
J.
,
Zhu
,
A.
,
Santamaria
,
J.
,
Langer
,
R.
, and
Kohane
,
D. S.
,
2014
, “
Near-Infrared-Actuated Devices for Remotely Controlled Drug Delivery.
,”
Proc. Natl. Acad. Sci. U. S. A.
,
111
(
4
), pp.
1349
54
. 10.1073/pnas.1322651111
5.
Longo
,
G. S.
,
Olvera De La Cruz
,
M.
, and
Szleifer
,
I.
,
2016
, “
Controlling Swelling/Deswelling of Stimuli-Responsive Hydrogel Nanofilms in Electric Fields
,”
Soft Matter
,
12
(
40
), pp.
8359
8366
. 10.1039/C6SM01172A
6.
Stepanov
,
G. V.
,
Abramchuk
,
S. S.
,
Grishin
,
D. A.
,
Nikitin
,
L. V.
,
Kramarenko
,
E. Y.
, and
Khokhlov
,
A. R.
,
2007
, “
Effect of a Homogeneous Magnetic Field on the Viscoelastic Behavior of Magnetic Elastomers
,”
Polymer
,
48
(
2
), pp.
488
495
. 10.1016/j.polymer.2006.11.044
7.
Dargahi
,
A.
,
Sedaghati
,
R.
, and
Rakheja
,
S.
,
2019
, “
On the Properties of Magnetorheological Elastomers in Shear Mode: Design, Fabrication and Characterization
,”
Compos. Part B: Eng.
,
159
(
2018
), pp.
269
283
. 10.1016/j.compositesb.2018.09.080
8.
Schümann
,
M.
, and
Odenbach
,
S.
,
2017
, “
In-Situ Observation of the Particle Microstructure of Magnetorheological Elastomers in Presence of Mechanical Strain and Magnetic Fields
,”
J. Magn. Magn. Mater.
,
441
(
1
), pp.
88
92
. 10.1016/j.jmmm.2017.05.024
9.
Li
,
Y.
,
Li
,
J.
,
Li
,
W.
, and
Du
,
H.
,
2014
, “
A State-of-the-Art Review on Magnetorheological Elastomer Devices
,”
Smart Mater. Struct.
,
23
(
12
), p.
123001
.
10.
Melzer
,
M.
,
Karnaushenko
,
D.
,
Makarov
,
D.
,
Baraban
,
L.
,
Calvimontes
,
A.
,
Mönch
,
I.
,
Kaltofen
,
R.
,
Mei
,
Y.
, and
Schmidt
,
O. G.
,
2012
, “
Elastic Magnetic Sensor With Isotropic Sensitivity for In-Flow Detection of Magnetic Objects
,”
RSC Adv.
,
2
(
6
), pp.
2284
2288
. 10.1039/c2ra01062c
11.
Li
,
W.
,
Kostidis
,
K.
,
Zhang
,
X.
, and
Zhou
,
Y.
,
2009
, “
Development of a Force Sensor Working With MR Elastomers
,”
IEEE/ASME International Conference on Advanced Intelligent Mechatronics
,
Singapore
,
July 14–17
, AIM, pp.
233
238
.
12.
Miller
,
M. M.
,
Prinz
,
G. A.
,
Cheng
,
S. F.
, and
Bounnak
,
S.
,
2002
, “
Detection of a Micron-Sized Magnetic Sphere Using a Ring-Shaped Anisotropic Magnetoresistance-Based Sensor: A Model for a Magnetoresistance-Based Biosensor
,”
Appl. Phys. Lett.
,
81
(
12
), pp.
2211
2213
. 10.1063/1.1507832
13.
Wu
,
Y.
,
Xue
,
S.
,
Yang
,
H.
,
Zhang
,
H.
,
Zhang
,
T.
, and
Gou
,
S.
,
2017
, “
Polymerization-Induced Phase Separation for the Fabrication of Magnetic Sponges for Oil Spill Reclamation
,”
Chem. Eng. J.
,
328
, pp.
639
644
. 10.1016/j.cej.2017.07.086
14.
Liu
,
L.
,
Lei
,
J.
,
Li
,
L.
,
Zhang
,
R.
,
Mi
,
N.
,
Chen
,
H.
,
Huang
,
D.
, and
Li
,
N.
,
2017
, “
A Facile Method to Fabricate the Superhydrophobic Magnetic Sponge for Oil-Water Separation
,”
Mater. Lett.
,
195
, pp.
66
70
. 10.1016/j.matlet.2017.02.100
15.
Turco
,
A.
,
Malitesta
,
C.
,
Barillaro
,
G.
,
Greco
,
A.
,
Maffezzoli
,
A.
, and
Mazzotta
,
E.
,
2015
, “
A Magnetic and Highly Reusable Macroporous Superhydrophobic/Superoleophilic PDMS/MWNT Nanocomposite for Oil Sorption From Water
,”
J. Mater. Chem. A
,
3
(
34
), pp.
17685
17696
. 10.1039/C5TA04353K
16.
Sun
,
S. S.
,
Chen
,
Y.
,
Yang
,
J.
,
Tian
,
T. F.
,
Deng
,
H. X.
,
Li
,
W. H.
,
Du
,
H.
, and
Alici
,
G.
,
2014
, “
The Development of An Adaptive Tuned Magnetorheological Elastomer Absorber Working in Squeeze Mode
,”
Smart Mater. Struct.
,
23
(
7
), p.
075009
.
17.
Bocian
,
M.
,
Kaleta
,
J.
,
Lewandowski
,
D.
, and
Przybylski
,
M.
,
2017
, “
Tunable Absorption System Based on Magnetorheological Elastomers and Halbach Array: Design and Testing
,”
J. Magn. Magn. Mater.
,
435
(
1
), pp.
46
57
. 10.1016/j.jmmm.2017.03.071
18.
Li
,
Y.
,
Li
,
J.
,
Tian
,
T.
, and
Li
,
W.
,
2013
, “
A highly adjustable magnetorheological elastomer base isolator for applications of real-time adaptive control
,”
Smart Mater. Struct.
,
22
(
9
), p.
095020
.
19.
Deng
,
H. X.
,
Gong
,
X. L.
, and
Wang
,
L. H.
,
2006
, “
Development of an Adaptive Tuned Vibration Absorber With Magnetorheological Elastomer
,”
Smart Mater. Struct.
,
15
(
5
), pp.
N111
N116
.
20.
Liu
,
F.
,
Alici
,
G.
,
Zhang
,
B.
,
Beirne
,
S.
, and
Li
,
W.
,
2015
, “
Fabrication and Characterization of a Magnetic Micro-Actuator Based on Deformable Fe-Doped PDMS Artificial Cilium using 3D Printing
,”
Smart Mater. Struct.
,
24
(
3
), p.
035015
.
21.
Cezar
,
C. A.
,
Kennedy
,
S. M.
,
Mehta
,
M.
,
Weaver
,
J. C.
,
Gu
,
L.
,
Vandenburgh
,
H.
, and
Mooney
,
D. J.
,
2014
, “
Biphasic Ferrogels for Triggered Drug and Cell Delivery
,”
Adv. Healthcare Mater.
,
3
(
11
), pp.
1869
1876
. 10.1002/adhm.201400095
22.
Shademani
,
A.
,
Zhang
,
H.
, and
Chiao
,
M.
,
2018
, “Design, Fabrication and Characterization of Magnetic Porous PDMS as an On-Demand Drug Delivery Device,”
Clinical Applications of Magnetic Nanoparticles: From Fabrication to Clinical Applications
,
T. K. T.
Nguyen
, ed.,
CRC Press
,
Boca Raton, FL
, p.
365
, Chap. 20.
23.
Pirmoradi
,
F. N.
,
Jackson
,
J. K.
,
Burt
,
H. M.
, and
Chiao
,
M.
,
2011
, “
On-Demand Controlled Release of Docetaxel From a Battery-Less MEMS Drug Delivery Device.
,”
Lab Chip
,
11
(
16
), pp.
2744
2752
. 10.1039/c1lc20134d
24.
Zhao
,
X.
,
Kim
,
J.
,
Cezar
,
C. A.
,
Huebsch
,
N.
,
Lee
,
K.
,
Bouhadir
,
K.
, and
Mooney
,
D. J.
,
2011
, “
Active Scaffolds for On-Demand Drug and Cell Delivery
,”
Proc. Natl. Acad. Sci. U. S. A.
,
108
(
1
), pp.
67
72
. 10.1073/pnas.1007862108
25.
Zachkani
,
P.
,
Jackson
,
J. K.
,
Pirmoradi
,
F. N.
, and
Chiao
,
M.
,
2015
, “
A Cylindrical Magnetically-Actuated Drug Delivery Device Proposed for Minimally Invasive Treatment of Prostate Cancer
,”
RSC Adv.
,
5
(
119
), pp.
98087
98096
. 10.1039/C5RA23172H
26.
Shademani
,
A.
,
Zhang
,
H.
,
Jackson
,
J. K.
, and
Chiao
,
M.
,
2016
, “
Active Regulation of On-Demand Drug Delivery by Magnetically Triggerable Microspouters
,”
Adv. Funct. Mater.
,
27
(
6
), p.
1604558
.
27.
Datta
,
S.
,
Atulasimha
,
J.
,
Mudivarthi
,
C.
, and
Flatau
,
A. B.
,
2010
, “
Stress and Magnetic Field-Dependent Young’s Modulus in Single Crystal Iron-Gallium Alloys
,”
J. Magn. Magn. Mater.
,
322
(
15
), pp.
2135
2144
. 10.1016/j.jmmm.2010.01.046
28.
Mitsumata
,
T.
,
Honda
,
A.
,
Kanazawa
,
H.
, and
Kawai
,
M.
,
2012
, “
Magnetically Tunable Elasticity for Magnetic Hydrogels Consisting of Carrageenan and Carbonyl Iron Particles
,”
J. Phys. Chem. B
,
116
(
40
), pp.
12341
12348
. 10.1021/jp3049372
29.
An
,
H.
,
Picken
,
S. J.
, and
Mendes
,
E.
,
2010
, “
Enhanced Hardening of Soft Self-Assembled Copolymer Gels Under Homogeneous Magnetic Fields
,”
Soft Matter
,
6
(
18
), pp.
4497
4503
. 10.1039/c0sm00216j
30.
Varga
,
Z.
,
Filipcsei
,
G.
, and
Zrínyi
,
M.
,
2006
, “
Magnetic Field Sensitive Functional Elastomers With Tuneable Elastic Modulus
,”
Polymer
,
47
(
1
), pp.
227
233
. 10.1016/j.polymer.2005.10.139
31.
Soledad Antonel
,
P.
,
Jorge
,
G.
,
Perez
,
O. E.
,
Butera
,
A.
,
Gabriela Leyva
,
A.
, and
Martín Negri
,
R.
,
2011
, “
Magnetic and Elastic Properties of CoFe2O4-polydimethylsiloxane Magnetically Oriented Elastomer Nanocomposites
,”
J. Appl. Phys.
,
110
(
4
), p.
043920
. 10.1063/1.3624602
32.
Allahyarov
,
E.
,
Menzel
,
A. M.
,
Zhu
,
L.
, and
Löwen
,
H.
,
2014
, “
Magnetomechanical Response of Bilayered Magnetic Elastomers
,”
Smart Mater. Struct.
,
23
(
11
), p.
115004
. 10.1088/0964-1726/23/11/115004
33.
Abramchuk
,
S.
,
Kramarenko
,
E.
,
Stepanov
,
G.
,
Nikitin
,
L.
,
Filipcsei
,
G.
,
Khokhlov
,
A.
, and
Zrinyi
,
M.
,
2007
, “
Novel Highly Elastic Magnetic Materials for Dampers and Seals: Part I. Preparation and Characterization of the Elastic Materials
,”
Polym. Adv. Technol.
,
18
(
2007
), pp.
883
890
. 10.1002/pat.924
34.
Abramchuk
,
S.
,
Kramarenko
,
E.
,
Grishin
,
D.
,
Stepanov
,
G.
,
Nikitin
,
L.
,
Filipcsei
,
G.
,
Khokhlov
,
A.
, and
Zrínyi
,
M.
,
2007
, “
Novel Highly Elastic Magnetic Materials for Dampers and Seals: Part II. Material Behavior in a Magnetic Field
,”
Polym. Adv. Technol.
,
18
(
2007
), pp.
513
518
. 10.1002/pat.923
35.
Liao
,
G. J.
,
Gong
,
X. L.
,
Xuan
,
S. H.
,
Kang
,
C. J.
, and
Zong
,
L. H.
,
2012
, “
Development of a Real-Time Tunable Stiffness and Damping Vibration Isolator Based on Magnetorheological Elastomer
,”
J. Intell. Mater. Syst. Struct.
,
23
(
1
), pp.
25
33
. 10.1177/1045389X11429853
36.
An
,
H. N.
,
Sun
,
B.
,
Picken
,
S. J.
, and
Mendes
,
E.
,
2012
, “
Long Time Response of Soft Magnetorheological Gels
,”
J. Phys. Chem. B
,
116
(
15
), pp.
4702
4711
. 10.1021/jp301482a
37.
Belyaeva
,
I. A.
,
Kramarenko
,
E. Y.
,
Stepanov
,
G. V.
,
Sorokin
,
V. V.
,
Stadler
,
D.
, and
Shamonin
,
M.
,
2016
, “
Transient Magnetorheological Response of Magnetoactive Elastomers to Step and Pyramid Excitations
,”
Soft Matter
,
12
(
11
), pp.
2901
2913
. 10.1039/C5SM02690C
38.
Kumar
,
V.
,
Lee
,
J. Y.
, and
Lee
,
D. J.
,
2018
, “
The Response Force and Rate of Magneto-Rheological Elastomers With Different Fillers and Magnetic Fields
,”
J. Magn. Magn. Mater.
,
466
, pp.
164
171
. 10.1016/j.jmmm.2018.06.072
39.
Winger
,
J.
,
Schümann
,
M.
,
Kupka
,
A.
, and
Odenbach
,
S.
,
2019
, “
Influence of the Particle Size on the Magnetorheological Effect of Magnetorheological Elastomers
,”
J. Magn. Magn. Mater.
,
481
, pp.
176
182
. 10.1016/j.jmmm.2019.03.027
40.
Kaleta
,
J.
,
Królewicz
,
M.
, and
Lewandowski
,
D.
,
2011
, “
Magnetomechanical Properties of Anisotropic and Isotropic Magnetorheological Composites With Thermoplastic Elastomer Matrices
,”
Smart Mater. Struct.
,
20
(
8
), p.
085006
. 10.1088/0964-1726/20/8/085006
41.
Lokander
,
M.
,
Reitberger
,
T.
, and
Stenberg
,
B.
,
2004
, “
Oxidation of Natural Rubber-Based Magnetorheological Elastomers
,”
Polym. Degrad. Stab.
,
86
(
3
), pp.
467
471
. 10.1016/j.polymdegradstab.2004.05.019
42.
Bica
,
I.
,
Anitas
,
E. M.
,
Bunoiu
,
M.
,
Vatzulik
,
B.
, and
Juganaru
,
I.
,
2014
, “
Hybrid Magnetorheological Elastomer: Influence of Magnetic Field and Compression Pressure on its Electrical Conductivity
,”
J. Ind. Eng. Chem.
,
20
(
6
), pp.
3994
3999
. 10.1016/j.jiec.2013.12.102
43.
Gong
,
X.
,
Fan
,
Y.
,
Xuan
,
S.
,
Xu
,
Y.
, and
Peng
,
C.
,
2012
, “
Control of the Damping Properties of Magnetorheological Elastomers by Using Polycaprolactone as a Temperature-Controlling Component
,”
Ind. Eng. Chem. Res.
,
51
(
18
), pp.
6395
6403
. 10.1021/ie300317b
44.
Yu
,
M.
,
Ju
,
B.
,
Fu
,
J.
,
Liu
,
X.
, and
Yang
,
Q.
,
2012
, “
Influence of Composition of Carbonyl Iron Particles on Dynamic Mechanical Properties of Magnetorheological Elastomers
,”
J. Magn. Magn. Mater.
,
324
(
13
), pp.
2147
2152
. 10.1016/j.jmmm.2012.02.033
45.
Agirre-Olabide
,
I.
,
Lion
,
A.
, and
Elejabarrieta
,
M. J.
,
2017
, “
A New Three-Dimensional Magneto-Viscoelastic Model for Isotropic Magnetorheological Elastomers
,”
Smart Mater. Struct.
,
26
(
3
), p.
035021
. 10.1088/1361-665X/26/3/035021
46.
Ivaneyko
,
D.
,
Toshchevikov
,
V. P.
,
Saphiannikova
,
M.
, and
Heinrich
,
G.
,
2011
, “
Magneto-Sensitive Elastomers in a Homogeneous Magnetic Field: A Regular Rectangular Lattice Model
,”
Macromol. Theory Simul.
,
20
(
6
), pp.
411
424
. 10.1002/mats.201100018
47.
Chen
,
L.
, and
Jerrams
,
S.
,
2011
, “
A Rheological Model of the Dynamic Behavior of Magnetorheological Elastomers
,”
J. Appl. Phys.
,
110
(
1
), p.
013513
. 10.1063/1.3603052
48.
Behrooz
,
M.
,
Wang
,
X.
, and
Gordaninejad
,
F.
,
2014
, “
Modeling of a New Semi-Active/passive Magnetorheological Elastomer Isolator
,”
Smart Mater. Struct.
,
23
(
4
), p.
045013
.
49.
Leng
,
D.
,
Sun
,
L.
,
Sun
,
J.
, and
Lin
,
Y.
,
2013
, “
Derivation of Stiffness Matrix in Constitutive Modeling of Magnetorheological Elastomer
,”
J. Phys.: Conf. Ser.
,
412
(
1
), p.
012028
.
50.
Liao
,
G.
,
Gong
,
X.
, and
Xuan
,
S.
,
2013
, “
Magnetic Field-Induced Compressive Property of Magnetorheological Elastomer Under High Strain Rate
,”
Ind. Eng. Chem. Res.
,
52
(
25
), pp.
8445
8453
. 10.1021/ie400864d
51.
Jolly
,
M. R.
,
Carlson
,
J.
,
Munoz
,
B. C.
, and
Bullions
,
T. A.
,
1996
, “
The Magnetoviscoelastic Response of Elastomer Composites Consisting of Ferrous Particles Embedded in a Polymer Matrix
,”
J. Intell. Mater. Syst. Struct.
,
7
(
6
), pp.
613
622
. 10.1177/1045389X9600700601
52.
Thévenot
,
J.
,
Oliveira
,
H.
,
Sandre
,
O.
, and
Lecommandoux
,
S.
,
2013
, “
Magnetic Responsive Polymer Composite Materials
,”
Chem. Soc. Rev.
,
42
(
17
), pp.
7099
7116
. 10.1039/c3cs60058k
53.
Li
,
Y.
,
Huang
,
G.
,
Zhang
,
X.
,
Li
,
B.
,
Chen
,
Y.
,
Lu
,
T.
,
Lu
,
T. J.
, and
Xu
,
F.
,
2013
, “
Magnetic Hydrogels and Their Potential Biomedical Applications
,”
Adv. Funct. Mater.
,
23
(
6
), pp.
660
672
. 10.1002/adfm.201201708
54.
Kondaveeti
,
S.
,
Semeano
,
A. T. S.
,
Cornejo
,
D. R.
,
Ulrich
,
H.
, and
Petri
,
D. F. S.
,
2018
, “
Magnetic Hydrogels for Levodopa Release and Cell Stimulation Triggered by External Magnetic Field
,”
Colloids Surf. B: Biointerfaces
,
167
, pp.
415
424
. 10.1016/j.colsurfb.2018.04.040
55.
Ramachandran
,
V.
,
Bartlett
,
M. D.
,
Wissman
,
J.
, and
Majidi
,
C.
,
2016
, “
Elastic Instabilities of a Ferroelastomer Beam for Soft Reconfigurable Electronics
,”
Extreme Mech. Lett.
,
9
, pp.
282
290
. 10.1016/j.eml.2016.08.007
56.
Shi
,
J.
,
Zhang
,
H.
,
Jackson
,
J.
,
Shademani
,
A.
, and
Chiao
,
M.
,
2016
, “
A Robust and Refillable Magnetic Sponge Capsule for Remotely Triggered Drug Release
,”
J. Mater. Chem. B
,
4
(
46
), pp.
7415
7422
. 10.1039/C6TB02762H
57.
Ng
,
J. M.
,
Gitlin
,
I.
,
Stroock
,
A. D.
, and
Whitesides
,
G. M.
,
2002
, “
Components for Integrated Poly(dimethylsiloxane) Microfluidic Systems
,”
Electrophoresis
,
23
(
20
), pp.
3461
3473
. 10.1002/1522-2683(200210)23:20<3461::AID-ELPS3461>3.0.CO;2-8
58.
Boczkowska
,
A.
, and
Awietjan
,
S. F.
,
2009
, “
Smart Composites of Urethane Elastomers With Carbonyl Iron
,”
J. Mater. Sci.
,
44
(
15
), pp.
4104
4111
. 10.1007/s10853-009-3592-7
59.
Park
,
B. J.
,
Song
,
K. H.
, and
Choi
,
H. J.
,
2009
, “
Magnetic Carbonyl Iron Nanoparticle Based Magnetorheological Suspension and Its Characteristics
,”
Mater. Lett.
,
63
(
15
), pp.
1350
1352
. 10.1016/j.matlet.2009.03.013
60.
Pedraza
,
E.
,
Brady
,
A. C.
,
Fraker
,
C. A.
,
Molano
,
R. D.
,
Sukert
,
S.
,
Berman
,
D. M.
,
Kenyon
,
N. S.
,
Pileggi
,
A.
,
Ricordi
,
C.
, and
Stabler
,
C. L.
,
2013
, “
Macroporous Three-Dimensional PDMS Scaffolds for Extrahepatic Islet Transplantation
,”
Cell Transplantation
,
22
(
7
), pp.
1123
1125
. 10.3727/096368912X657440
61.
Ho
,
S. T.
, and
Hutmacher
,
D. W.
,
2006
, “
A Comparison of Micro CT With Other Techniques Used in the Characterization of Scaffolds
,”
Biomaterials
,
27
(
8
), pp.
1362
1376
. 10.1016/j.biomaterials.2005.08.035
62.
Wits
,
W. W.
,
Carmignato
,
S.
,
Zanini
,
F.
, and
Vaneker
,
T. H.
,
2016
, “
Porosity Testing Methods for the Quality Assessment of Selective Laser Melted Parts
,”
CIRP Ann. - Manuf. Technol.
,
65
(
1
), pp.
201
204
. 10.1016/j.cirp.2016.04.054
63.
Carmignato
,
S.
,
Dreossi
,
D.
,
Mancini
,
L.
,
Marinello
,
F.
,
Tromba
,
G.
, and
Savio
,
E.
,
2009
, “
Testing of X-ray Microtomography Systems Using a Traceable Geometrical Standard
,”
Meas. Sci. Technol.
,
20
(
8
), p.
084021
. 10.1088/0957-0233/20/8/084021
64.
Moon
,
F.
,
1984
,
Magneto-Solid Mechanics
,
Wiley & Sons
,
New York
.
65.
Camacho
,
J. M.
, and
Sosa
,
V.
,
2013
, “
Alternative Method to Calculate the Magnetic Field of Permanent Magnets With Azimuthal Symmetry
,”
Revista Mexicana de Fisica E
,
59
(
1
), pp.
8
17
.
66.
Prozorov
,
R.
, and
Kogan
,
V. G.
,
2018
, “
Effective Demagnetizing Factors of Diamagnetic Samples of Various Shapes
,”
Phys. Rev. Appl.
,
10
(
1
), pp.
1
13
. 10.1103/PhysRevApplied.10.014030
67.
Huang
,
R.
,
Zheng
,
S.
,
Liu
,
Z.
, and
Ng
,
T. Y.
,
2020
, “
Recent Advances of the Constitutive Models of Smart Materials-Hydrogels and Shape Memory Polymers
,”
Int. J. Appl. Mech.
,
12
(
2050014
), pp.
10
1142
. 10.1142/S1758825120500143
You do not currently have access to this content.