Abstract

We demonstrate how a geometrically exact formulation of discrete slender beams can be generalized for the efficient simulation of complex networks of flexible beams by introducing rigid connections through special junction elements. The numerical framework, which is based on discrete differential geometry of framed curves in a time-discrete setting for time- and history-dependent constitutive models, is applicable to elastic and inelastic beams undergoing large rotations with and without natural curvature and actuation. Especially, the latter two aspects make our approach a versatile and efficient alternative to higher-dimensional finite element techniques frequently used, e.g., for the simulation of active, shape-morphing, and reconfigurable structures, as demonstrated by a suite of examples.

References

1.
Shankar
,
M. R.
,
Smith
,
M. L.
,
Tondiglia
,
V. P.
,
Lee
,
K. M.
,
McConney
,
M. E.
,
Wang
,
D. H.
,
Tan
,
L.-S.
, and
White
,
T. J.
,
2013
, “
Contactless, Photoinitiated Snap-Through in Azobenzene-Functionalized Polymers
,”
PNAS
,
110
(
47
), pp.
18792
18797
. 10.1073/pnas.1313195110
2.
Gladman
,
A. S.
,
Matsumoto
,
E. A.
,
Nuzzo
,
R. G.
,
Mahadevan
,
L.
, and
Lewis
,
J. A.
,
2016
, “
Biomimetic 4D Printing
,”
Nat. Mater.
,
15
(
4
), pp.
413
419
. 10.1038/nmat4544
3.
Janbaz
,
S.
,
Hedayati
,
R.
, and
Zadpoor
,
A.
,
2016
, “
Programming the Shape-Shifting of Flat Soft Matter: From Self-Rolling/Self-Twisting Materials to Self-Folding Origami
,”
Mater. Horiz.
,
3
(
6
), pp.
536
547
. 10.1039/C6MH00195E
4.
Ding
,
Z.
,
Weeger
,
O.
,
Qi
,
H. J.
, and
Dunn
,
M. L.
,
2018
, “
4D Rods: 3D Structures Via Programmable 1d Composite Rods
,”
Mater. Des.
,
137
, pp.
256
. 10.1016/j.matdes.2017.10.004
5.
Lei
,
M.
,
Hong
,
W.
,
Zhao
,
Z.
,
Hamel
,
C. M.
,
Chen
,
M.
,
Lu
,
H.
, and
Qi
,
H. J.
,
2019
, “
3d Printing of Auxetic Metamaterials With Digitally Reprogrammable Shape
,”
ACS Appl. Mater. Interfaces
,
11
(
25
), pp.
22768
22776
. 10.1021/acsami.9b06081
6.
Testa
,
P.
,
Style
,
R. W.
,
Cui
,
J.
,
Donnelly
,
C.
,
Borisova
,
E.
,
Derlet
,
P. M.
,
Dufresne
,
E. R.
, and
Heyderman
,
L. J.
,
2019
, “
Magnetically Addressable Shape-Memory and Stiffening in a Composite Elastomer
,”
Adv. Mater.
,
31
(
29
), p.
1900561
. 10.1002/adma.201900561
7.
Boley
,
J. W.
,
van Rees
,
W. M.
,
Lissandrello
,
C.
,
Horenstein
,
M. N.
,
Truby
,
R. L.
,
Kotikian
,
A.
,
Lewis
,
J. A.
, and
Mahadevan
,
L.
,
2019
, “
Shape-Shifting Structured Lattices Via Multimaterial 4d Printing
,”
Proc. Natl. Acad. Sci. U.S.A.
,
116
(
42
), pp.
20856
20862
. 10.1073/pnas.1908806116
8.
Xu
,
S.
,
Yan
,
Z.
,
Jang
,
K.-I.
, and
Huang
,
W.
,
2015
, “
Assembly of Micro/Nanomaterials Into Complex, Three-Dimensional Architectures by Compressive Buckling
,”
Science
,
347
(
6218
), pp.
154
159
. 10.1126/science.1260960
9.
Duduta
,
M.
,
Hajiesmaili
,
E.
,
Zhao
,
H.
,
Wood
,
R. J.
, and
Clarke
,
D. R.
,
2019
, “
Realizing the Potential of Dielectric Elastomer Artificial Muscles
,”
Proc. Natl. Acad. Sci. U.S.A.
,
116
(
7
), pp.
2476
2481
. 10.1073/pnas.1815053116
10.
Kotikian
,
A.
,
McMahan
,
C.
,
Davidson
,
E. C.
,
Muhammad
,
J. M.
,
Weeks
,
R. D.
,
Daraio
,
C.
, and
Lewis
,
J. A.
,
2019
, “
Untethered Soft Robotic Matter With Passive Control of Shape Morphing and Propulsion
,”
Sci. Rob.
,
4
(
33
), p.
eaax7044
. 10.1126/scirobotics.aax7044
11.
Kim
,
Y.
,
Parada
,
G. A.
,
Liu
,
S.
, and
Zhao
,
X.
,
2019
, “
Ferromagnetic Soft Continuum Robots
,”
Sci. Rob.
,
4
(
33
), p.
eaax7329
. 10.1126/scirobotics.aax7329
12.
Xia
,
X.
,
Afshar
,
A.
,
Yang
,
H.
,
Portela
,
C. M.
,
Kochmann
,
D. M.
,
Di Leo
,
C. V.
, and
Greer
,
J. R.
,
2019
, “
Electrochemically Reconfigurable Architected Materials
,”
Nature
,
573
(
7773
), pp.
205
213
. 10.1038/s41586-019-1538-z
13.
Simo
,
J. C.
,
1985
, “
A Finite Strain Beam Formulation. The Three-Dimensional Dynamic Problem. Part I
,”
Comput. Methods Appl. Mech. Eng.
,
49
(
1
), pp.
55
70
. 10.1016/0045-7825(85)90050-7
14.
Simo
,
J. C.
, and
Vu-Quoc
,
L.
,
1986
, “
A Three-Dimensional Finite-Strain Rod Model. Part II: Computational Aspects
,”
Comput. Methods Appl. Mech. Eng.
,
58
(
1
), pp.
79
116
. 10.1016/0045-7825(86)90079-4
15.
Cardona
,
A.
, and
Geradin
,
M.
,
1988
, “
A Beam Finite Element Non-Linear Theory With Finite Rotations
,”
Int. J. Numer. Methods Eng.
,
26
(
11
), pp.
2403
2438
. 10.1002/nme.1620261105
16.
Ibrahimbegović
,
A.
,
1995
, “
On Finite Element Implementation of Geometrically Nonlinear Reissner’s Beam Theory: Three-Dimensional Curved Beam Elements
,”
Comput. Methods Appl. Mech. Eng.
,
122
(
1–2
), pp.
11
26
. 10.1016/0045-7825(95)00724-F
17.
Sonneville
,
V.
,
Cardona
,
A.
, and
Brüls
,
O.
,
2014
, “
Geometrically Exact Beam Finite Element Formulated on the Special Euclidean Group SE(3)
,”
Comput. Methods Appl. Mech. Eng.
,
268
, pp.
451
474
. 10.1016/j.cma.2013.10.008
18.
Bergou
,
M.
,
Wardetzky
,
M.
,
Robinson
,
S.
,
Audoly
,
B.
, and
Grinspun
,
E.
,
2008
, “
Discrete Elastic Rods
,”
ACM Trans. Graph.
,
27
(
3
), p.
63
. 10.1145/1360612.1360662
19.
Jung
,
P.
,
Leyendecker
,
S.
,
Linn
,
J.
, and
Ortiz
,
M.
,
2011
, “
A Discrete Mechanics Approach to the Cosserat Rod Theory—Part 1: Static Equilibria
,”
Int. J. Numer. Methods Eng.
,
85
(
1
), pp.
31
60
. 10.1002/nme.2950
20.
Jawed
,
M.
,
Novelia
,
A.
, and
OReilly
,
O.
,
2017
,
A Primer on the Kinematics of Discrete Elastic Rods
,
Springer
,
New York
.
21.
Shen
,
Z.
,
Huang
,
J.
,
Chen
,
W.
, and
Bao
,
H.
,
2015
, “
Geometrically Exact Simulation of Inextensible Ribbon
,”
Comput. Graph. Forum
,
34
(
7
), pp.
145
154
. 10.1111/cgf.12753
22.
Bergou
,
M.
,
Audoly
,
B.
,
Vouga
,
E.
,
Wardetzky
,
M.
, and
Grinspun
,
E.
,
2010
, “
Discrete Viscous Threads
,”
ACM Trans. Graph.
,
29
(
4
). 10.1145/1778765.1778853
23.
Audoly
,
B.
,
Clauvelin
,
N.
,
Brun
,
P.-T.
,
Bergou
,
M.
,
Grinspun
,
E.
, and
Wardetzky
,
M.
,
2013
, “
A Discrete Geometric Approach for Simulating the Dynamics of Thin Viscous Threads
,”
J. Comput. Phys.
,
253
, pp.
18
49
. 10.1016/j.jcp.2013.06.034
24.
Lang
,
H.
,
Linn
,
J.
, and
Arnold
,
M.
,
2011
, “
Multi-Body Dynamics Simulation of Geometrically Exact Cosserat Rods
,”
Multibody Syst. Dyn.
,
25
(
3
), pp.
285
312
. 10.1007/s11044-010-9223-x
25.
Linn
,
J.
,
Lang
,
H.
, and
Tuganov
,
A.
,
2013
, “
Geometrically Exact Cosserat Rods With Kelvin–Voigt Type Viscous Damping
,”
Mech. Sci.
,
4
(
1
), pp.
79
96
. 10.5194/ms-4-79-2013
26.
Jawed
,
M. K.
,
Da
,
F.
,
Joo
,
J.
,
Grinspun
,
E.
, and
Reis
,
P.
,
2014
, “
Coiling of Elastic Rods on Rigid Substrates
,”
PNAS
,
111
(
41
), pp.
14663
14668
. 10.1073/pnas.1409118111
27.
Kaufman
,
D. M.
,
Tamstorf
,
R.
,
Smith
,
B.
,
Aubry
,
J.-M.
, and
Grinspun
,
E.
,
2014
, “
Adaptive Nonlinearity for Collisions in Complex Rod Assemblies
,”
ACM Trans. Graph.
,
33
(
4
), Article No. 123. 10.1145/2601097.2601100
28.
Gazzola
,
M.
,
Dudte
,
L. H.
,
McCormick
,
A. G.
, and
Mahadevan
,
L.
,
2018
, “
Forward and Inverse Problems in the Mechanics of Soft Filaments
,”
Royal Soc. Open Sci.
,
5
(
6
), p.
171628
. 10.1098/rsos.171628
29.
Lestringant
,
C.
,
Audoly
,
B.
, and
Kochmann
,
D. M.
,
2020
, “
A Discrete, Geometrically Exact Method for Simulating Nonlinear, Elastic and Inelastic Beams
,”
Comput. Methods Appl. Mech. Eng.
,
361
, p.
112741
. 10.1016/j.cma.2019.112741
30.
Ortiz
,
M.
, and
Stainier
,
L.
,
1999
, “
The Variational Formulation of Viscoplastic Constitutive Updates
,”
Comput. Methods Appl. Mech. Eng.
,
171
(
3–4
), pp.
419
444
. 10.1016/S0045-7825(98)00219-9
31.
Crisfield
,
M. A.
,
1990
, “
A Consistent Co-Rotational Formulation for Non-Linear, Three-Dimensional, Beam-Elements
,”
Comput. Methods Appl. Mech. Eng.
,
81
(
2
), pp.
131
150
. 10.1016/0045-7825(90)90106-V
32.
Crisfield
,
M. A.
, and
Jelenić
,
G.
,
1998
, “
Objectivity of Strain Measures in the Geometrically Exact Three-Dimensional Beam Theory and Its Finite-Element Implementation
,”
Proc. R. Soc. A
,
455
, pp.
1125
1147
. 10.1098/rspa.1999.0352
33.
Perez
,
J.
,
Thomaszewski
,
B.
,
Coros
,
S.
,
Bickel
,
B.
,
Canabal
,
J. A.
,
Sumner
,
R.
, and
Otaduy
,
M. A.
,
2015
, “
Design and Fabrication of Flexible Rod Meshes
,”
ACM Trans. Graph.
,
34
(
1983
), p.
138
. 10.1145/2766998
34.
Dalcin
,
L.
,
Kler
,
P.
,
Paz
,
R.
, and
Cosim
,
A.
,
2011
, “
Parallel Distributed Computing Using Python
,”
Adv. Water Res.
,
34
(
9
), pp.
1124
1139
. 10.1016/j.advwatres.2011.04.013
35.
Phlipot
,
G. P.
, and
Kochmann
,
D. M.
,
2019
, “
A Quasicontinuum Theory for the Nonlinear Mechanical Response of General Periodic Truss Lattices
,”
J. Mech. Phys. Solids
,
124
, pp.
758
780
. 10.1016/j.jmps.2018.11.014
36.
Wicks
,
N.
, and
Guest
,
S. D.
,
2004
, “
Single Member Actuation in Large Repetitive Truss Structures
,”
Int. J. Solids Struct.
,
41
(
3–4
), pp.
965
978
. 10.1016/j.ijsolstr.2003.09.029
37.
Leung
,
A.
, and
Guest
,
S.
,
2007
, “
Single Member Actuation of Kagome Lattice Structures
,”
J. Mech. Mater. Struct.
,
2
(
2
), pp.
303
317
. 10.2140/jomms.2007.2.303
38.
Paulose
,
J.
,
Meeussen
,
A. S.
, and
Vitelli
,
V.
,
2015
, “
Selective Buckling Via States of Self-Stress in Topological Metamaterials
,”
Proc. Natl. Acad. Sci. U.S.A.
,
112
(
25
), pp.
7639
7644
. 10.1073/pnas.1502939112
39.
Yan
,
Z.
,
Zhang
,
F.
,
Liu
,
F.
,
Han
,
M.
,
Ou
,
D.
,
Liu
,
Y.
,
Lin
,
Q.
,
Guo
,
X.
,
Fu
,
H.
,
Xie
,
Z.
,
Gao
,
M.
,
Huang
,
Y.
,
Kim
,
J.
,
Qiu
,
Y.
,
Nan
,
K.
,
Kim
,
J.
,
Gutruf
,
P.
,
Luo
,
H.
,
Zhao
,
A.
,
Hwang
,
K.-C.
,
Huang
,
Y.
,
Zhang
,
Y.
, and
Rogers
,
J. A.
,
2016
, “
Mechanical Assembly of Complex, 3d Mesostructures From Releasable Multilayers of Advanced Materials
,”
Sci. Adv.
,
2
(
9
), p.
e1601014
. 10.1126/sciadv.1601014
40.
Yan
,
Z.
,
Han
,
M.
,
Yang
,
Y.
,
Nan
,
K.
,
Luan
,
H.
,
Luo
,
Y.
,
Zhang
,
Y.
,
Huang
,
Y.
, and
Rogers
,
J. A.
,
2017
, “
Deterministic Assembly of 3d Mesostructures in Advanced Materials Via Compressive Buckling: A Short Review of Recent Progress
,”
Extreme Mech. Lett.
,
11
, pp.
96
104
. 10.1016/j.eml.2016.12.006
41.
Guo
,
X.
,
Wang
,
X.
,
Ou
,
D.
,
Ye
,
J.
,
Pang
,
W.
,
Huang
,
Y.
,
Rogers
,
J. A.
, and
Zhang
,
Y.
,
2018
, “
Controlled Mechanical Assembly of Complex 3d Mesostructures and Strain Sensors by Tensile Buckling
,”
npj Flexible Electron.
,
2
(
1
), p.
14
. 10.1038/s41528-018-0028-y
42.
Raviv
,
D.
,
Zhao
,
W.
,
McKnelly
,
C.
,
Papadopoulou
,
A.
,
Kadambi
,
A.
,
Shi
,
B.
,
Hirsch
,
S.
,
Dikovsky
,
D.
,
Zyracki
,
M.
,
Olguin
,
C.
,
Raskar
,
R.
, and
Tibbits
,
S.
,
2014
, “
Active Printed Materials for Complex Self-Evolving Deformations
,”
Sci. Rep.
,
4
(
1
), p.
15485
. 10.1038/srep07422
43.
Wagner
,
M.
,
Chen
,
T.
, and
Shea
,
K.
,
2017
, “
Large Shape Transforming 4D Auxetic Structures
,”
3D Print. Additive Manuf.
,
3
(
1
), pp.
133
141
. 10.1089/3dp.2017.0027
44.
Ding
,
Z.
,
Yuan
,
C.
,
Peng
,
X.
,
Wang
,
T.
,
Qi
,
H. J.
, and
Dunn
,
M. L.
,
2017
, “
Direct 4d Printing Via Active Composite Materials
,”
Sci. Adv.
,
3
(
4
), p.
e1602890
. 10.1126/sciadv.1602890
45.
Zhao
,
Q.
,
Qi
,
H. J.
, and
Xie
,
T.
,
2015
, “
Recent Progress in Shape Memory Polymer: New Behavior, Enabling Materials, and Mechanistic Understanding
,”
Prog. Polym. Sci.
,
49–50
, pp.
79
120
. 10.1016/j.progpolymsci.2015.04.001
46.
Mailen
,
R. W.
,
Liu
,
Y.
,
Dickey
,
D.
,
Zikry
,
M.
, and
Genzer
,
J.
,
2015
, “
Modelling of Shape Memory Polymer Sheets that Self-Fold in Response to Localized Heating
,”
Soft Matter
,
11
(
39
), p.
7827
. 10.1039/C5SM01681A
47.
Mao
,
Y.
,
Isakov
,
M. S.
,
Wu
,
J.
,
Dunn
,
M. L.
, and
Qi
,
H. J.
,
2015
, “
Sequential Self-Folding Structures by 3d Printed Digital Shape Memory Polymers
,”
Sci. Rep.
,
5
(
1
), p.
13616
. 10.1038/srep13616
48.
Hubbard
,
A. M.
,
Mailen
,
R. W.
,
Zikry
,
M.
,
Dickey
,
D.
, and
Genzer
,
J.
,
2017
, “
Controllable Curvature From Planar Polymer Sheets in Response to Light
,”
Soft Matter
,
13
(
12
), p.
2299
. 10.1039/C7SM00088J
49.
Hawkes
,
E.
,
An
,
B.
,
Bendernou
,
N. M.
,
Tanaka
,
H.
,
Kim
,
S.
,
Demaine
,
E. D.
,
Rus
,
D.
, and
Wood
,
R. J.
,
2010
, “
Programmable Matter by Folding
,”
Proc. Natl. Acad. Sci. U.S.A.
,
107
(
28
), p.
12441
. 10.1073/pnas.0914069107
50.
Basset
,
A. B.
,
1895
, “
On the Deformation of Thin Elastic Wires
,”
Am. J. Math.
,
17
(
4
), pp.
281
317
. 10.2307/2369638
51.
Doedel
,
E. J.
,
Champneys
,
A. R.
,
Fairgrieve
,
T. F.
,
Kuznetsov
,
Y. A.
,
Sandstede
,
B.
, and
Wang
,
X. J.
,
2007
, “
AUTO-07p: Continuation and Bifurcation Software for Ordinary Differential Equations
,” see http://indy.cs.concordia.ca/auto/
52.
Sadowsky
,
M.
,
1930
, “
Theorie der elastisch biegsamen undehnbaren Bänder mit Anwendungenauf das Möbiussche Band
,”
Proceedings of the 3rd International Congress of Applied Mechanics
,
Stockholm
, vol.
2
, pp.
444
451
.
53.
Wunderlich
,
W.
,
1962
, “
Über ein abwickelbares möbiusband
,”
Monatshefte für Mathematik
,
66
(
3
), pp.
276
289
. 10.1007/BF01299052
54.
Audoly
,
B.
, and
Seffen
,
K. A.
,
2015
, “
Buckling of Naturally Curved Elastic Strips: The Ribbon Model Makes a Difference
,”
J. Elast.
,
119
, pp.
293
320
. https://doi.org/10.1007/s10659-015-9520-y
You do not currently have access to this content.