Abstract

Over recent decades, it has become clear that the extraction of fluids from underground reservoirs can be linked to seismicity and aseismic deformation around producing fields. Using a simple model with uniform fluid extraction from a reservoir, Segall (1989, “Earthquakes Triggered by Fluid Extraction,” Geology, 17(10), pp. 942–946) illustrated how poroelastic stresses resulting from fluid withdrawal may be consistent with earthquake focal mechanisms surrounding some producing fields. Since these stress fields depend on the spatial gradient of the change in pore fluid content within the reservoir, both quantitative and qualitative predictions of the stress changes surrounding a reservoir may be considerably affected by assumptions in the geometry and hydraulic properties of the producing zone. Here, we expand upon the work of Segall (1989, “Earthquakes Triggered by Fluid Extraction,” Geology, 17, pp. 942–946 and 1985, “Stress and Subsidence Resulting From Subsurface Fluid Withdrawal in the Epicentral Region of the 1983 Coalinga Earthquake,” J. Geophys. Res. Solid Earth, 90, pp. 6801–6816) to provide a quantitative analysis of the surrounding stresses resulting from fluid extraction and diffusion in a horizontal reservoir. In particular, when considering the diffusion of fluids, the spatial pattern and magnitude of imposed stresses is controlled by the ratio between the volumetric rate of fluid extraction and the reservoir diffusivity. Moreover, the effective reservoir length expands over time along with the diffusion front, predicting a time-dependent rotation of the induced principal stresses from relative tension to compression along the ends of the producing zone. This reversal in perturbed principal stress directions may manifest as a rotation in earthquake focal mechanisms or varied sensitivity to poroelastic triggering, depending upon the criticality of the pre-existing stress state and fault orientations, which may explain inferred rotations in principal stress directions associated with some induced seismicity.

References

1.
Zoback
,
M.
,
2013
, “
Managing the Seismic Risk Posed by Wastewater Disposal
,”
Earth Mag.
,
57
, pp.
38
42
.
2.
Ellsworth
,
W. L.
,
2013
, “
Injection-Induced Earthquakes
,”
Science
,
341
(
6142
), p.
1225942
. 10.1126/science.1225942
3.
McGarr
,
A.
,
Bekins
,
B.
,
Burkardt
,
N.
,
Dewey
,
J.
,
Earle
,
P.
,
Ellsworth
,
W.
,
Ge
,
S.
,
Hickman
,
S.
,
Holland
,
A.
,
Majer
,
E.
,
Rubinstein
,
J.
, and
Sheehan
,
A.
,
2015
, “
Coping With Earthquakes Induced by Fluid Injection
,”
Science
,
347
(
6224
), pp.
830
831
. 10.1126/science.aaa0494
4.
Lee
,
K.-K.
,
Ellsworth
,
W. L.
,
Giardini
,
D.
,
Townend
,
J.
,
Ge
,
S.
,
Shimamoto
,
T.
,
Yeo
,
I.-W.
,
Kang
,
T.-S.
,
Rhie
,
J.
,
Sheen
,
D.-H.
,
Chang
,
C.
,
Woo
,
J.-U.
, and
Langenbruch
,
C.
,
2019
, “
Managing Injection-Induced Seismic Risks
,”
Science
,
364
(
6442
), pp.
730
732
. 10.1126/science.aax1878
5.
Healy
,
J. H.
,
Rubey
,
W. W.
,
Griggs
,
D. T.
, and
Raleigh
,
C. B.
,
1968
, “
The Denver Earthquakes
,”
Science
,
161
(
3848
), pp.
1301
1310
. 10.1126/science.161.3848.1301
6.
Raleigh
,
C. B.
,
Healy
,
J. H.
, and
Bredehoeft
,
J. D.
,
2013
,
Faulting and Crustal Stress at Rangely, Colorado. In Flow and Fracture of Rocks
,
American Geophysical Union
, pp.
275
284
. doi:10.1029/GM016p0275
7.
Raleigh
,
C. B.
,
Healy
,
J. H.
, and
Bredehoeft
,
J. D.
,
1976
, “
An Experiment in Earthquake Control at Rangely, Colorado
,”
Science
,
191
(
4233
), pp.
1230
1237
. 10.1126/science.191.4233.1230
8.
Hsieh
,
P. A.
, and
Bredehoeft
,
J. D.
,
1981
, “
A Reservoir Analysis of the Denver Earthquakes: A Case of Induced Seismicity
,”
J. Geophys. Res. Solid Earth
,
86
(
B2
), pp.
903
920
. 10.1029/JB086iB02p00903
9.
Frohlich
,
C.
,
Hayward
,
C.
,
Stump
,
B.
, and
Potter
,
E.
,
2011
, “
The Dallas-Fort Worth Earthquake Sequence: October 2008 Through May 2009
,”
Bull. Seismol. Soc. Am.
,
101
(
1
), pp.
327
340
. 10.1785/0120100131
10.
Horton
,
S.
,
2012
, “
Disposal of Hydrofracking Waste Fluid by Injection Into Subsurface Aquifers Triggers Earthquake Swarm in Central Arkansas With Potential for Damaging Earthquake
,”
Seismol. Res. Lett.
,
83
(
2
), pp.
250
260
. 10.1785/gssrl.83.2.250
11.
Kim
,
W.-Y.
,
2013
, “
Induced Seismicity Associated With Fluid Injection Into a Deep Well in Youngstown, Ohio
,”
J. Geophys. Res. Solid Earth
,
118
(
7
), pp.
3506
3518
. 10.1002/jgrb.50247
12.
Zhang
,
Y.
,
Person
,
M.
,
Rupp
,
J.
,
Ellett
,
K.
,
Celia
,
M. A.
,
Gable
,
C. W.
,
Bowen
,
B.
,
Evans
,
J.
,
Bandilla
,
K.
,
Mozley
,
P.
,
Dewers
,
T.
, and
Elliot
,
T.
,
2013
, “
Hydrogeologic Controls on Induced Seismicity In-Crystalline Basement Rocks Due to Fluid Injection Into Basal Reservoirs
,”
Groundwater
,
51
(
4
), pp.
525
538
. 10.1111/gwat.12071
13.
Frohlich
,
C.
,
Ellsworth
,
W.
,
Brown
,
W. A.
,
Brunt
,
M.
,
Luetgert
,
J.
,
MacDonald
,
T.
, and
Walter
,
S.
,
2014
, “
The 17 May 2012 M4.8 Earthquake Near Timpson, East Texas: An Event Possibly Triggered by Fluid Injection
,”
J. Geophys. Res. Solid Earth
,
119
(
1
), pp.
581
593
. 10.1002/2013JB010755
14.
Walsh
,
F.
, and
Zoback
,
M. D.
,
2015
, “
Oklahoma’s Recent Earthquakes and Salt Water Disposal
,”
Sci. Adv.
,
1
(
5
), p.
e1500195
. 10.1126/sciadv.1500195
15.
Keranen
,
K. M.
,
Weingarten
,
M.
,
Abers
,
G. A.
,
Bekins
,
B. A.
, and
Ge
,
S.
,
2014
, “
Sharp Increase in Central Oklahoma Seismicity Since 2008 Induced by Massive Wastewater Injection
,”
Science
,
345
(
6195
), pp.
448
451
. 10.1126/science.1255802
16.
Guglielmi
,
Y.
, and
Elsworth
,
D.
,
2015
, “
Seismicity Triggered by Fluid Injection-Induced Aseismic Slip
,”
Science
,
348
(
6240
), pp.
1224
1226
. 10.1126/science.aab0476
17.
Bhattacharya
,
P.
, and
Viesca
,
R. C.
,
2019
, “
Fluid-Induced Aseismic Fault Slip Outpaces Pore-Fluid Migration
,”
Science
,
364
(
6439
), pp.
464
468
. 10.1126/science.aaw7354
18.
Yerkes
,
R.
, and
Castle
,
R.
,
1970
, “
Surface Deformation Associated With Oil and Gas Field Operations in the United States, in Land Subsidencel
,”
Int. Assoc. Sci. Hydrol. UNESCO Publ.
,
89
(
1
), pp.
55
66
.
19.
Pennington
,
W. D.
,
Davis
,
S. D.
,
Carlson
,
S. M.
,
DuPree
,
J.
, and
Ewing
,
T. E.
,
1986
, “
The Evolution of Seismic Barriers and Asperities Caused by the Depressuring of Fault Planes in Oil and Gas Fields of South Texas
,”
Bull. Seismol. Soc. Am.
,
76
(
4
), pp.
939
948
.
20.
Wetmiller
,
R. J.
,
1986
, “
Earthquakes Near Rocky Mountain House, Alberta, and Their Relationship to Gas Production Facilities
,”
Can. J. Earth Sci.
,
23
(
2
), pp.
172
181
. 10.1139/e86-020
21.
Grasso
,
J. R.
, and
Wittlinger
,
G.
,
1990
, “
Ten Years of Seismic Monitoring Over a Gas Field
,”
Bull. Seismol. Soc. Am.
,
80
(
2
), pp.
450
473
.
22.
Feignier
,
B.
, and
Grasso
,
J.
,
1990
, “
Seismicity Induced by a Gas-Production: I. Correlation of Focal Mechanisms and Dome Structure
,”
Pure Appl. Geophys.
,
134
(
3
), pp.
405
426
. 10.1007/BF00878740
23.
Grasso
,
J. R.
, and
Feignier
,
B.
,
1989
, “
Seismicity Induced by Gas-Production: 2. Lithology Correlated Events, Induced Stresses and Deformation
,”
Pure Appl. Geophys.
,
134
, pp.
427
450
. 10.1007/BF00878741
24.
Doser
,
D. I.
,
Baker
,
M. R.
, and
Mason
,
D. B.
,
1991
, “
Seismicity in the War-Wink Gas Field, Delaware Basin, West Texas, and Its Relationship to Petroleum Production
,”
Bull. Seismol. Soc. Am.
,
81
(
3
), pp.
971
986
.
25.
Guyoton
,
F.
,
Grasso
,
J.-R.
, and
Volant
,
P.
,
1992
, “
Interrelation Between Induced Seismic Instabilities and Complex Geological Structure
,”
Geophys. Res. Lett.
,
19
(
7
), pp.
705
708
. 10.1029/92GL00359
26.
Segall
,
P.
,
Grasso
,
J.-R.
, and
Mossop
,
A.
,
1994
, “
Poroelastic Stressing and Induced Seismicity Near the lacq Gas Field, Southwestern France
,”
J. Geophys. Res. Solid Earth
,
99
(
B8
), pp.
15423
15438
. 10.1029/94JB00989
27.
Frohlich
,
C.
,
DeShon
,
H.
,
Stump
,
B.
,
Hayward
,
C.
,
Hornbach
,
M.
, and
Walter
,
J.
,
2016
, “
A Historical Review of Induced Earthquakes in Texas
,”
Seismol. Rev. Lett.
,
87
(
4
), pp.
1022
1038
. 10.1785/0220160016
28.
Hough
,
S. E.
,
Tsai
,
V. C.
,
Walker
,
R.
, and
Aminzadeh
,
F.
,
2017
, “
Was the mw 7.5 1952 kern County, California, Earthquake Induced (or Triggered)?
J. Seismol.
,
21
(
6
), pp.
1613
1621
. 10.1007/s10950-017-9685-x
29.
Hough
,
S. E.
, and
Bilham
,
R.
,
2018
, “
Revisiting Earthquakes in the Los Angeles, California, Basin During the Early Instrumental Period: Evidence for an Association With Oil Production
,”
J. Geophys. Res. Solid Earth
,
123
(
12
), pp.
10684
10705
. 10.1029/2017JB014616
30.
Segall
,
P.
,
1989
, “
Earthquakes Triggered by Fluid Extraction
,”
Geology
,
17
(
10
), pp.
942
946
. 10.1130/0091-7613(1989)017<0942:ETBFE>2.3.CO;2
31.
Segall
,
P.
,
1992
, “
Induced Stresses Due to Fluid Extraction From Axisymmetric Reservoirs
,”
Pure Appl. Geophys.
,
139
, pp.
535
560
. 10.1007/BF00879950
32.
Segall
,
P.
,
1985
, “
Stress and Subsidence Resulting From Subsurface Fluid Withdrawal in the Epicentral Region of the 1983 Coalinga Earthquake
,”
J. Geophys. Res. Solid Earth
,
90
(
B8
), pp.
6801
6816
. 10.1029/JB090iB08p06801
33.
Keranen
,
K. M.
, and
Weingarten
,
M.
,
2018
, “
Induced Seismicity
,”
Annu. Rev. Earth Planet Sci.
,
46
(
1
), pp.
149
174
. 10.1146/annurev-earth-082517-010054
34.
Smith
,
J. D.
,
Avouac
,
J.-P.
,
White
,
R. S.
,
Copley
,
A.
,
Gualandi
,
A.
, and
Bourne
,
S.
,
2019
, “
Reconciling the Long-Term Relationship Between Reservoir Pore Pressure Depletion and Compaction in the Groningen Region
,”
J. Geophys. Res. Solid Earth
,
124
(
6
), pp.
6165
6178
. 10.1029/2018JB016801
35.
Keranen
,
K. M.
,
Savage
,
H. M.
,
Abers
,
G. A.
, and
Cochran
,
E. S.
,
2013
, “
Potentially Induced Earthquakes in Oklahoma, USA: Links Between Wastewater Injection and the 2011 Mw 5.7 Earthquake Sequence
,”
Geology
,
41
(
6
), pp.
699
702
. 10.1130/G34045.1
36.
Mukuhira
,
Y.
,
Fuse
,
K.
,
Naoi
,
M.
,
Fehler
,
M.
,
Moriya
,
H.
,
Ito
,
T.
,
Asanuma
,
H.
, and
Häring
,
M.
,
2018
, “
Hybrid Focal Mechanism Determination: Constraining Focal Mechanisms of Injection Induced Seismicity Using In Situ Stress Data
,”
Geophys. J. Int.
,
215
(
2
), pp.
1427
1441
. 10.1093/gji/ggy333
37.
Segall
,
P.
, and
Lu
,
S.
,
2015
, “
Injection-Induced Seismicity: Poroelastic and Earthquake Nucleation Effects
,”
J. Geophys. Res. Solid Earth
,
120
(
7
), pp.
5082
5103
. 10.1002/2015JB012060
38.
Martínez-Garzón
,
P.
,
Bohnhoff
,
M.
,
Kwiatek
,
G.
, and
Dresen
,
G.
,
2013
, “
Stress Tensor Changes Related to Fluid Injection at the Geysers Geothermal Field, California
,”
Geophys. Res. Lett.
,
40
(
11
), pp.
2596
2601
. 10.1002/grl.50438
39.
Martínez-Garzón
,
P.
,
Kwiatek
,
G.
,
Sone
,
H.
,
Bohnhoff
,
M.
,
Dresen
,
G.
, and
Hartline
,
C.
,
2014
, “
Spatiotemporal Changes, Faulting Regimes, and Source Parameters of Induced Seismicity: A Case Study From the Geysers Geothermal Field
,”
J. Geophys. Res. Solid Earth
,
119
(
11
), pp.
8378
8396
. 10.1002/2014JB011385
40.
Schoenball
,
M.
,
Dorbath
,
L.
,
Gaucher
,
E.
,
Wellmann
,
J. F.
, and
Kohl
,
T.
,
2014
, “
Change of Stress Regime During Geothermal Reservoir Stimulation
,”
Geophys. Res. Lett.
,
41
(
4
), pp.
1163
1170
. 10.1002/2013GL058514
41.
Nur
,
A.
, and
Byerlee
,
J. D.
,
1971
, “
An Exact Effective Stress Law for Elastic Deformation of Rock With Fluids
,”
J. Geophys. Res. (1896–1977)
,
76
(
26
), pp.
6414
6419
. 10.1029/JB076i026p06414
42.
Carslaw
,
A. R.
, and
Jaeger
,
C. J.
,
1959
,
Conduction of Heat in Solids
,
Oxford Science Publications
,
Oxford
.
43.
Eaton
,
D. W.
, and
Mahani
,
A. B.
,
2015
, “
Focal Mechanisms of Some Inferred Induced Earthquakes in Alberta, Canada
,”
Seismol. Res. Lett.
,
86
(
4
), pp.
1078
1085
. 10.1785/0220150066
44.
Shapiro
,
S.
,
Rothert
,
E.
,
Rath
,
V.
, and
Rindschwentner
,
J.
,
2002
, “
Characterization of Fluid Transport Properties of Reservoirs Using Induced Microseismicity
,”
Geophysics
,
67
(
1
), pp.
14
26
. 10.1190/1.1451317
You do not currently have access to this content.