Abstract

In the presented work, wave dynamics of 2D finite granular crystals of polyurethane cylinders under low-velocity impact loading was investigated to gain better understanding of the influence of lateral constraints. The deformation of the individual grains in the granular crystals during the impact loading was recorded by a high-speed camera and digital image correlation (DIC) was used to calculate high fidelity kinematic and strain fields in each grain. These grain-scale kinematic and strain fields were utilized for the computation of the intergranular forces at each contact using a granular element method (GEM) based mathematical framework. Since the polyurethane were viscoelastic in nature, the viscoelasticity constitutive law was implemented in the GEM framework and it was shown that linear elasticity using the strain rate-dependent coefficient of elasticity is sufficient to use instead of a viscoelastic framework. These particle-scale kinematic and strain field measurements in conjunction with the interparticle forces also provided some interesting insight into the directional dependence of the wave scattering and attenuation in finite granular crystals. The directional nature of the wave propagation resulted in strong wave reflection from the walls. It was also noteworthy that the two reflected waves from the two opposite sidewalls result in destructive interference. These lateral constraints at different depths leads to significant differences in wave attenuation characteristics and the finite granular crystals can be divided into two regions: upper region, with exponential wave decay rate, and lower region, with higher decay rate.

References

1.
Doney
,
R. L.
,
Agui
,
J. H.
, and
Sen
,
S.
,
2009
, “
Energy Partitioning and Impulse Dispersion in the Decorated, Tapered, Strongly Nonlinear Granular Alignment: A System With Many Potential Applications
,”
J. Appl. Phys.
,
106
(
6
), p.
064905
. 10.1063/1.3190485
2.
Thomas
,
C. N.
,
Papargyri-Beskou
,
S.
, and
Mylonakis
,
G.
,
2009
, “
Wave Dispersion in Dry Granular Materials by the Distinct Element Method
,”
Soil Dyn. Earthquake Eng.
,
29
(
5
), pp.
888
897
. 10.1016/j.soildyn.2008.10.002
3.
Martínez
,
A. J.
,
Yasuda
,
H.
,
Kim
,
E.
,
Kevrekidis
,
P. G.
,
Porter
,
M. A.
, and
Yang
,
J.
,
2016
, “
Scattering of Waves by Impurities in Precompressed Granular Chains
,”
Phys. Rev. E
,
93
(
5
), p.
052224
. 10.1103/PhysRevE.93.052224
4.
Nesterenko
,
V. F.
,
Daraio
,
C.
,
Herbold
,
E. B.
, and
Jin
,
S.
,
2005
, “
Anomalous Wave Reflection at the Interface of Two Strongly Nonlinear Granular Media
,”
Phys. Rev. Lett.
,
95
(
15
), p.
158702
. 10.1103/PhysRevLett.95.158702
5.
Daraio
,
C.
,
Nesterenko
,
V. F.
,
Herbold
,
E. B.
, and
Jin
,
S.
,
2006
, “
Energy Trapping and Shock Disintegration in a Composite Granular Medium
,”
Phys. Rev. Lett.
,
96
(
5
), pp.
1
15
. 10.1103/PhysRevLett.96.058002
6.
Fraternali
,
F.
,
Porter
,
M. A.
, and
Daraio
,
C.
,
2008
, “
Optimal Design of Composite Granular Protectors
,”
Mech. Adv. Mater. Struct.
,
17
(
1
), p.
13
.
7.
Spadoni
,
A.
, and
Daraio
,
C.
,
2010
, “
Generation and Control of Sound Bullets With a Nonlinear Acoustic Lens
,”
Proc. Natl. Acad. Sci. U. S. A.
,
107
(
16
), pp.
7230
7234
. 10.1073/pnas.1001514107
8.
Li
,
F.
,
Anzel
,
P.
,
Yang
,
J.
,
Kevrekidis
,
P. G.
, and
Daraio
,
C.
,
2014
, “
Granular Acoustic Switches and Logic Elements
,”
Nat. Commun.
,
5
(
1
), p.
5311
. 10.1038/ncomms6311
9.
Boechler
,
N.
,
Theocharis
,
G.
, and
Daraio
,
C.
,
2011
, “
Bifurcation-Based Acoustic Switching and Rectification
,”
Nat. Mater.
,
10
(
9
), pp.
665
668
. 10.1038/nmat3072
10.
Chatterjee
,
A.
,
1999
, “
Asymptotic Solution for Solitary Waves in a Chain of Elastic Spheres
,”
Phys. Rev. E
59
(
5
), pp.
5912
5919
. 10.1103/physreve.59.5912
11.
Rosas
,
A.
, and
Lindenberg
,
K.
,
2004
, “
Pulse Velocity in a Granular Chain
,”
Phys. Rev. E—Stat. Nonlin. Soft Matter Phys.
,
69
(
3
), pp.
2
4
.
12.
Harbola
,
U.
,
Rosas
,
A.
,
Esposito
,
M.
, and
Lindenberg
,
K.
,
2009
, “
Pulse Propagation in Tapered Granular Chains: An Analytic Study
,”
Phys. Rev. E—Stat. Nonlin. Soft Matter Phys.
,
80
(
3
), pp.
1
10
. 10.1103/physreve.80.031303
13.
Porter
,
M. A.
,
Daraio
,
C.
,
Herbold
,
E. B.
,
Szelengowicz
,
I.
, and
Kevrekidis
,
P. G.
,
2008
, “
Highly Nonlinear Solitary Waves in Periodic Dimer Granular Chains
,”
Phys. Rev. E—Stat. Nonlin. Soft Matter Phys.
,
77
(
1
), pp.
1
4
. 10.1103/physreve.77.015601
14.
Lindenberg
,
K.
,
Harbola
,
U.
,
Romero
,
H.
, and
Rosas
,
A.
,
2011
, “
Pulse Propagation in Granular Chains
,”
AIP Conference Proceedings
,
Lake Louise, Alberta, Canada
,
Sept. 20–24
, pp.
97
110
.
15.
Vorotnikov
,
K.
,
Starosvetsky
,
Y.
,
Theocharis
,
G.
, and
Kevrekidis
,
P. G.
,
2018
, “
Wave Propagation in a Strongly Nonlinear Locally Resonant Granular Crystal
,”
Phys. D Nonlin. Phenom.
,
365
, pp.
27
41
. 10.1016/j.physd.2017.10.007
16.
Coste
,
C.
,
Falcon
,
E.
, and
Fauve
,
S.
,
1997
, “
Solitary Waves in a Chain of Beads Under Hertz Contact
,”
Phys. Rev. E
,
56
(
5
), pp.
6104
6117
. 10.1103/PhysRevE.56.6104
17.
Daraio
,
C.
,
Nesterenko
,
V. F.
,
Herbold
,
E. B.
, and
Jin
,
S.
,
2005
, “
Strongly Nonlinear Waves in a Chain of Teflon Beads
,”
Phys. Rev. E
,
72
(
1
), p.
016603
. 10.1103/PhysRevE.72.016603
18.
Carretero-González
,
R.
,
Khatri
,
D.
,
Porter
,
M. A.
,
Kevrekidis
,
P. G.
, and
Daraio
,
C.
,
2009
, “
Dissipative Solitary Waves in Granular Crystals
,”
Phys. Rev. Lett.
,
102
(
2
), pp.
1
4
. 10.1103/PhysRevLett.102.024102
19.
Nesterenko
,
V. F.
,
1984
, “
Propagation of Nonlinear Compression Pulses in Granular Media
,”
ASME J. Appl. Mech. Tech. Phys.
,
24
(
5
), pp.
733
743
. 10.1007/BF00905892
20.
Nesterenko
,
V. F.
,
2001
,
Dynamics of Heterogeneous Materials
,
Springer New York
,
New York, NY
.
21.
Herrmann
,
H. J.
, and
Luding
,
S.
,
1998
, “
Modeling Granular Media on the Computer
,”
Continuum Mech. Thermodyn.
,
10
(
4
), pp.
189
231
. 10.1007/s001610050089
22.
Bardenhagen
,
S. G.
, and
Brackbill
,
J. U.
,
1998
, “
Dynamic Stress Bridging in Granular Material
,”
J. Appl. Phys.
,
83
(
11
), pp.
5732
5740
. 10.1063/1.367429
23.
Bouchaud
,
J. P.
,
Claudin
,
P.
,
Levine
,
D.
, and
Otto
,
M.
,
2001
, “
Force Chain Splitting in Granular Materials: A Mechanism for Large-Scale Pseudo-Elastic Behaviour
,”
Eur. Phys. J. E
,
4
(
4
), pp.
451
457
. 10.1007/s101890170100
24.
Awasthi
,
A. P.
,
Smith
,
K. J.
,
Geubelle
,
P. H.
, and
Lambros
,
J.
,
2012
, “
Propagation of Solitary Waves in 2D Granular Media: A Numerical Study
,”
Mech. Mater.
,
54
, pp.
100
112
. 10.1016/j.mechmat.2012.07.005
25.
Xu
,
J.
, and
Zheng
,
B.
,
2016
, “
Stress Wave Propagation in Two-Dimensional Buckyball Lattice
,”
Sci. Rep.
,
6
(
1
), p.
37692
. 10.1038/srep37692
26.
Awasthi
,
A.
,
Wang
,
Z.
,
Broadhurst
,
N.
, and
Geubelle
,
P.
,
2015
, “
Impact Response of Granular Layers
,”
Granul. Matter
,
17
(
1
), pp.
21
31
. 10.1007/s10035-015-0547-3
27.
Manciu
,
M.
,
Sen
,
S.
, and
Hurd
,
A. J.
,
2001
, “
Impulse Propagation in Dissipative and Disordered Chains With Power-Law Repulsive Potentials
,”
Phys. D Nonlin. Phenom.
,
157
(
3
), pp.
226
240
. 10.1016/S0167-2789(01)00302-5
28.
Harbola
,
U.
,
Rosas
,
A.
,
Romero
,
A. H.
, and
Lindenberg
,
K.
,
2010
, “
Pulse Propagation in Randomly Decorated Chains
,”
Phys. Rev. E
,
82
(
1
), p.
011306
. 10.1103/PhysRevE.82.011306
29.
Hong
,
J.
,
2005
, “
Universal Power-Law Decay of the Impulse Energy in Granular Protectors
,”
Phys. Rev. Lett.
,
94
(
10
), pp.
18
21
. 10.1103/PhysRevLett.94.108001
30.
Shukla
,
A.
, and
Damania
,
C.
,
1987
, “
Experimental Investigation of Wave Velocity and Dynamic Contact Stresses in an Assembly of Disks
,”
Exp. Mech.
,
27
(
3
), pp.
268
281
. 10.1007/BF02318093
31.
Shukla
,
A.
,
1991
, “
Dynamic Photoelastic Studies of Wave Propagation in Granular Media
,”
Opt. Lasers Eng.
,
14
(
3
), pp.
165
184
. 10.1016/0143-8166(91)90047-W
32.
Burgoyne
,
H. A.
,
Newman
,
J. A.
,
Jackson
,
W. C.
, and
Daraio
,
C.
,
2015
, “
Guided Impact Mitigation in 2D and 3D Granular Crystals
,”
Proc. Eng.
,
103
, pp.
52
59
. 10.1016/j.proeng.2015.04.008
33.
Tanaka
,
K.
,
Nishida
,
M.
,
Kunimochi
,
T.
, and
Takagi
,
T.
,
2002
, “
Discrete Element Simulation and Experiment for Dynamic Response of Two-Dimensional Granular Matter to the Impact of a Spherical Projectile
,”
Powder Technol.
,
124
(
1–2
), pp.
160
173
. 10.1016/S0032-5910(01)00489-2
34.
Maknickas
,
A.
,
Kačeniauskas
,
A.
,
Kačianauskas
,
R.
,
Balevičius
,
R.
, and
Džiugys
,
A.
,
2006
, “
Parallel DEM Software for Simulation of Granular Media
,”
Informatica
,
17
(
2
), pp.
207
224
.
35.
Tsuji
,
Y.
,
Kawaguchi
,
T.
, and
Tanaka
,
T.
,
1993
, “
Discrete Particle Simulation of Two-Dimensional Fluidized Bed
,”
Powder Technol.
,
77
(
1
), pp.
79
87
. 10.1016/0032-5910(93)85010-7
36.
Schwager
,
T.
, and
Pöschel
,
T.
,
2007
, “
Coefficient of Restitution and Linear–Dashpot Model Revisited
,”
Granular Matter
,
9
(
6
), pp.
465
469
. 10.1007/s10035-007-0065-z
37.
Wu
,
C.
,
Li
,
L.
, and
Thornton
,
C.
,
2003
, “
Rebound Behaviour of Spheres for Plastic Impacts
,”
Int. J. Impact Eng.
,
28
(
9
), pp.
929
946
. 10.1016/S0734-743X(03)00014-9
38.
Menut
,
P.
,
Seiffert
,
S.
,
Sprakel
,
J.
, and
Weitz
,
D. A.
,
2012
, “
Does Size Matter? Elasticity of Compressed Suspensions of Colloidal- and Granular-Scale Microgels
,”
Soft Matter
,
8
(
1
), pp.
156
164
. 10.1039/C1SM06355C
39.
Restrepo
,
D.
,
Mankame
,
N. D.
, and
Zavattieri
,
P. D.
,
2015
, “
Phase Transforming Cellular Materials
,”
Extreme Mech. Lett.
,
4
, pp.
52
60
. 10.1016/j.eml.2015.08.001
40.
Shan
,
S.
,
Kang
,
S. H.
,
Raney
,
J. R.
,
Wang
,
P.
,
Fang
,
L.
,
Candido
,
F.
,
Lewis
,
J. A.
, and
Bertoldi
,
K.
,
2015
, “
Multistable Architected Materials for Trapping Elastic Strain Energy
,”
Adv. Mater.
,
27
(
29
), pp.
4296
4301
. 10.1002/adma.201501708
41.
Harada
,
S.
,
Takagi
,
S.
, and
Matsumoto
,
Y.
,
2003
, “
Wave Propagation in a Dynamic System of Soft Granular Materials
,”
Phys. Rev. E—Stat. Nonlin. Soft Matter Phys.
,
67
(
6
), p.
061305
. 10.1103/PhysRevE.67.061305
42.
Brodu
,
N.
,
Dijksman
,
J. A.
, and
Behringer
,
R. P.
,
2015
, “
Multiple-Contact Discrete-Element Model for Simulating Dense Granular Media
,”
Phys. Rev. E—Stat. Nonlin. Soft Matter Phys.
,
91
(
3
), pp.
1
6
. 10.1103/physreve.91.032201
43.
Cundall
,
P. A.
, and
Strack
,
O. D. L.
,
1979
, “
A Discrete Numerical Model for Granular Assemblies
,”
Géotechnique
,
29
(
1
), pp.
47
65
. 10.1680/geot.1979.29.1.47
44.
Lesniewska
,
D.
, and
Wood
,
D. M.
,
2009
, “
Observations of Stresses and Strains in a Granular Material
,”
J. Eng. Mech.
,
135
(
9
), pp.
1038
1054
. 10.1061/(ASCE)EM.1943-7889.0000015
45.
Clark
,
A. H.
,
Kondic
,
L.
, and
Behringer
,
R. P.
,
2012
, “
Particle Scale Dynamics in Granular Impact
,”
Phys. Rev. Lett.
,
109
(
23
), p.
238302
. 10.1103/PhysRevLett.109.238302
46.
Andrade
,
J. E.
, and
Avila
,
C. F.
,
2012
, “
Granular Element Method (GEM): Linking Inter-Particle Forces With Macroscopic Loading
,”
Granular Matter
,
14
(
1
), pp.
51
61
. 10.1007/s10035-011-0298-8
47.
Hurley
,
R.
,
Marteau
,
E.
,
Ravichandran
,
G.
, and
Andrade
,
J. E.
,
2014
, “
Extracting Inter-Particle Forces in Opaque Granular Materials: Beyond Photoelasticity
,”
J. Mech. Phys. Solids
,
63
(
1
), pp.
154
166
. 10.1016/j.jmps.2013.09.013
48.
Hurley
,
R. C.
,
Hall
,
S. A.
,
Andrade
,
J. E.
, and
Wright
,
J.
,
2016
, “
Quantifying Interparticle Forces and Heterogeneity in 3D Granular Materials
,”
Phys. Rev. Lett.
,
117
(
9
), p.
098005
. 10.1103/PhysRevLett.117.098005
49.
Karanjgaokar
,
N.
,
2017
, “
Evaluation of Energy Contributions Using Inter-Particle Forces in Granular Materials Under Impact Loading
,”
Granular Matter
,
19
(
2
), p.
36
. 10.1007/s10035-017-0720-y
50.
Hurley
,
R. C.
,
Lim
,
K. W.
,
Ravichandran
,
G.
, and
Andrade
,
J. E.
,
2016
, “
Dynamic Inter-Particle Force Inference in Granular Materials: Method and Application
,”
Exp. Mech.
,
56
(
2
), pp.
217
229
. 10.1007/s11340-015-0063-8
51.
Pacheco
,
J. E. L.
,
Bavastri
,
C. A.
, and
Pereira
,
J. T.
,
2015
, “
Viscoelastic Relaxation Modulus Characterization Using Prony Series
,”
Lat. Am. J. Solids Struct.
,
12
(
2
), pp.
420
445
. 10.1590/1679-78251412
52.
Alagoz
,
S.
, and
Baykant Alagoz
,
B.
,
2013
, “
Sonic Crystal Acoustic Switch Device
,”
J. Acoust. Soc. Am.
,
133
(
6
), pp.
EL485
EL490
. 10.1121/1.4807306
53.
Liu
,
C.
, and
Nagel
,
S. R.
,
1993
, “
Sound in a Granular Material: Disorder and Nonlinearity
,”
Phys. Rev. B
,
48
(
21
), pp.
15646
15650
. 10.1103/PhysRevB.48.15646
54.
Somfai
,
E.
,
Roux
,
J.-N.
,
Snoeijer
,
J.
,
van Hecke
,
M.
, and
van Saarloos
,
W.
,
2005
, “
Elastic Wave Propagation in Confined Granular Systems
,”
Phys. Rev. E
,
72
(
2
), p.
021301
. 10.1103/PhysRevE.72.021301
55.
Langlois
,
V.
, and
Jia
,
X.
,
2015
, “
Sound Pulse Broadening in Stressed Granular Media
,”
Phys. Rev. E
,
91
(
2
), p.
022205
. 10.1103/PhysRevE.91.022205
56.
Santibanez
,
F.
,
Zuñiga
,
R.
, and
Melo
,
F.
,
2016
, “
Mechanical Impulse Propagation in a Three-Dimensional Packing of Spheres Confined at Constant Pressure
,”
Phys. Rev. E
,
93
(
1
), p.
012908
. 10.1103/PhysRevE.93.012908
57.
Losert
,
W.
,
Cooper
,
D. G. W.
,
Delour
,
J.
,
Kudrolli
,
A.
, and
Gollub
,
J. P.
,
1999
, “
Velocity Statistics in Excited Granular Media
,”
Chaos Interdiscip. J. Nonlin. Sci.
,
9
(
3
), pp.
682
690
. 10.1063/1.166442
58.
Herrmann
,
H. J.
,
Luding
,
S.
, and
Cafiero
,
R.
,
2001
, “
Dynamics of Granular Systems
,”
Phys. A Stat. Mech. Appl.
,
295
(
1–2
), pp.
93
100
. 10.1016/S0378-4371(01)00059-0
59.
Bray
,
D. J.
,
Swift
,
M. R.
, and
King
,
P. J.
,
2007
, “
Velocity Statistics in Dissipative, Dense Granular Media
,”
Phys. Rev. E
,
75
(
6
), p.
062301
. 10.1103/PhysRevE.75.062301
You do not currently have access to this content.