Abstract

Emerging three-dimensional (3D) printing techniques for soft active materials have demonstrated fascinating applications in various areas including programmable and reconfigurable structures, tissue engineering, and soft robotics. For example, polymeric gels, which consist of polymer networks swollen with solvent molecules, are capable of deforming and swelling/deswelling in response to external stimuli. Although polymeric gels are used to print structures, little attention has been paid to the effect of printing parameters on the cross-sectional shape of 3D-printed gel filaments or further to the dynamic responses of the printed structures. Due to the flow of the precursor solution before fully cured, the cross section of a printed gel filament is usually asymmetric. When immersed in water, the asymmetry in the cross section causes the printed filament to bend, and the interdiffusion of the two solvents leads to the alternation in bending direction. The bending curvature and response rate can be adjusted by turning printing parameters. As applications of this mechanism, we demonstrated various types of gel structures, capable of deforming from 1D strips to 2D spiral or sinusoidal shapes, warping from 2D flat sheet to 3D cylindrical helix when swollen, or wrapping and manipulating objects under external stimuli.

References

1.
Erb
,
R. M.
,
Sander
,
J. S.
,
Grisch
,
R.
, and
Studart
,
A. R.
,
2013
, “
Self-Shaping Composites With Programmable Bioinspired Microstructures
,”
Nat. Commun.
,
4
(
1
), p.
1712
. 10.1038/ncomms2666
2.
Cappello
,
L.
,
Galloway
,
K. C.
,
Sanan
,
S.
,
Wagner
,
D. A.
,
Granberry
,
R.
,
Engelhardt
,
S.
,
Haufe
,
F. L.
,
Peisner
,
J. D.
, and
Walsh
,
C. J.
,
2018
, “
Exploiting Textile Mechanical Anisotropy for Fabric-Based Pneumatic Actuators
,”
Soft Rob.
,
5
(
5
), pp.
662
674
. 10.1089/soro.2017.0076
3.
Wu
,
Z. L.
,
Moshe
,
M.
,
Greener
,
J.
,
Therien-Aubin
,
H.
,
Nie
,
Z.
,
Sharon
,
E.
, and
Kumacheva
,
E.
,
2013
, “
Three-dimensional Shape Transformations of Hydrogel Sheets Induced by Small-Scale Modulation of Internal Stresses
,”
Nat. Commun.
,
4
(
1
), p.
1586
. 10.1038/ncomms2549
4.
Gladman
,
A. S.
,
Matsumoto
,
E. A.
,
Nuzzo
,
R. G.
,
Mahadevan
,
L.
, and
Lewis
,
J. A.
,
2016
, “
Biomimetic 4D Printing
,”
Nat. Mater.
,
15
(
4
), pp.
413
418
. 10.1038/nmat4544
5.
Sano
,
K.
,
Ishida
,
Y.
, and
Aida
,
T.
,
2018
, “
Synthesis of Anisotropic Hydrogels and Their Applications
,”
Angew. Chem.-Int. Edit.
,
57
(
10
), pp.
2532
2543
. 10.1002/anie.201708196
6.
Zhao
,
Q.
,
Liang
,
Y.
,
Ren
,
L.
,
Yu
,
Z.
,
Zhang
,
Z.
, and
Ren
,
L.
,
2018
, “
Bionic Intelligent Hydrogel Actuators With Multimodal Deformation and Locomotion
,”
Nano Energy
,
51
(
1
), pp.
621
631
. 10.1016/j.nanoen.2018.07.025
7.
Shang
,
J.
, and
Theato
,
P.
,
2018
, “
Smart Composite Hydrogel With pH-, Ionic Strength- and Temperature-Induced Actuation
,”
Soft Matter
,
14
(
41
), pp.
8401
8407
. 10.1039/C8SM01728J
8.
Xiao
,
S.
,
Yang
,
Y.
,
Zhong
,
M.
,
Chen
,
H.
,
Zhang
,
Y.
,
Yang
,
J.
, and
Zheng
,
J.
,
2017
, “
Salt-Responsive Bilayer Hydrogels with Pseudo Double Network Structure Actuated by Polyelectrolyte and Anti-Polyelectrolyte Effects
,”
ACS Appl. Mater. Interfaces
,
9
(
24
), pp.
20843
20851
. 10.1021/acsami.7b04417
9.
Wang
,
L.
,
Jian
,
Y.
,
Le
,
X.
,
Lu
,
W.
,
Ma
,
C.
,
Zhang
,
J.
,
Huang
,
Y.
,
Huang
,
C.
, and
Chen
,
T.
,
2018
, “
Actuating and Memorizing Bilayer Hydrogels for a Self-Deformed Shape Memory Function
,”
Chem. Commun.
,
54
(
10
), pp.
1229
1232
. 10.1039/C7CC09456F
10.
Shiblee
,
M. N. I.
,
Ahmed
,
K.
,
Kawakami
,
M.
, and
Furukawa
,
H.
,
2019
, “
4D Printing of Shape-Memory Hydrogels for Soft-Robotic Functions
,”
Adv. Mater. Technol.
,
4
(
8),
p.
1900071
. 10.1002/admt.201900071
11.
Luo
,
R.
,
Wu
,
J.
,
Dinh
,
N. D.
, and
Chen
,
C. H.
,
2015
, “
Gradient Porous Elastic Hydrogels With Shape-Memory Property and Anisotropic Responses for Programmable Locomotion
,”
Adv. Funct. Mater.
,
25
(
47
), pp.
7272
7279
. 10.1002/adfm.201503434
12.
Asoh
,
T. A.
,
Matsusaki
,
M.
,
Kaneko
,
T.
, and
Akashi
,
M.
,
2008
, “
Fabrication of Temperature-Responsive Bending Hydrogels with a Nanostructured Gradient
,”
Adv. Mater.
,
20
(
11
), pp.
2080
2083
. 10.1002/adma.200702727
13.
Jiang
,
Z.
,
Sanchez
,
R. J. P.
,
Blakey
,
I.
, and
Whittaker
,
A. K.
,
2018
, “
3D Shape Change of Multi-Responsive Hydrogels Based on a Light-Programmed Gradient in Volume Phase Transition
,”
Chem. Commun.
,
54
(
77
), pp.
10909
10912
. 10.1039/C8CC06515B
14.
Liu
,
M.
,
Ishida
,
Y.
,
Ebina
,
Y.
,
Sasaki
,
T.
,
Hikima
,
T.
,
Takata
,
M.
, and
Aida
,
T.
,
2015
, “
An Anisotropic Hydrogel With Electrostatic Repulsion Between Cofacially Aligned Nanosheets
,”
Nature
,
517
(
7532
), pp.
68
72
. 10.1038/nature14060
15.
Sun
,
Z.
,
Yamauchi
,
Y.
,
Araoka
,
F.
,
Kim
,
Y. S.
,
Bergueiro
,
J.
,
Ishida
,
Y.
,
Ebina
,
Y.
,
Sasaki
,
T.
,
Hikima
,
T.
, and
Aida
,
T.
,
2018
, “
An Anisotropic Hydrogel Actuator Enabling Earthworm-Like Directed Peristaltic Crawling
,”
Angew. Chem.-Int. Edit.
,
57
(
48
), pp.
15772
15776
. 10.1002/anie.201810052
16.
Li
,
L.
,
Jiang
,
S.
,
Yue
,
S.
, and
Agarwal
,
S.
,
2016
, “
Giving Direction to Motion and Surface With Ultra-Fast Speed Using Oriented Hydrogel Fibers
,”
Adv. Funct. Mater.
,
26
(
7
), pp.
1021
1027
. 10.1002/adfm.201503612
17.
Zheng
,
S. Y.
,
Shen
,
Y.
,
Zhu
,
F.
,
Yin
,
J.
,
Qian
,
J.
,
Fu
,
J.
,
Wu
,
Z. L.
, and
Zheng
,
Q.
,
2018
, “
Programmed Deformations of 3D-Printed Tough Physical Hydrogels With High Response Speed and Large Output Force
,”
Adv. Funct. Mater.
,
28
(
37),
p.
1803366
. 10.1002/adfm.201803366
18.
Kuang
,
X.
,
Wu
,
J.
,
Chen
,
K.
,
Zhao
,
Z.
,
Ding
,
Z.
,
Hu
,
F.
,
Fang
,
D.
, and
Qi
,
H. J.
,
2019
, “
Grayscale Digital Light Processing 3D Printing for Highly Functionally Graded Materials
,”
Sci. Adv.
,
5
(
5
), p.
eaav5790
. 10.1126/sciadv.aav5790
19.
Yin
,
H.
,
Ding
,
Y.
,
Zhai
,
Y.
,
Tan
,
W.
, and
Yin
,
X.
,
2018
, “
Orthogonal Programming of Heterogeneous Micro-Mechano-Environments and Geometries in Three-Dimensional Bio-Stereolithography
,”
Nat. Commun.
,
9
(
1
), p.
4096
. 10.1038/s41467-018-06685-1
20.
Jin
,
D.
,
Chen
,
Q.
,
Huang
,
T.-Y.
,
Huang
,
J.
,
Zhang
,
L.
, and
Duan
,
H.
,
2019
, “
Four-dimensional Direct Laser Writing of Reconfigurable Compound Micromachines
,”
Mater. Today
,
32
(
1
), pp.
19
25
. 10.1016/j.mattod.2019.06.002
21.
Liu
,
X.
,
Yuk
,
H.
,
Lin
,
S.
,
Parada
,
G. A.
,
Tang
,
T. C.
,
Tham
,
E.
,
Fuente-Nunez
,
C.
,
Lu
,
T. K.
, and
Zhao
,
X.
,
2018
, “
3D Printing of Living Responsive Materials and Devices
,”
Adv. Mater.
,
30
(
4
), p.
1704821
. 10.1002/adma.201704821
22.
Zarek
,
M.
,
Layani
,
M.
,
Cooperstein
,
I.
,
Sachyani
,
E.
,
Cohn
,
D.
, and
Magdassi
,
S.
,
2016
, “
3D Printing of Shape Memory Polymers for Flexible Electronic Devices
,”
Adv. Mater.
,
28
(
22
), pp.
4449
4454
. 10.1002/adma.201503132
23.
Yap
,
H. K.
,
Ng
,
H. Y.
, and
Yeow
,
C.-H.
,
2016
, “
High-force Soft Printable Pneumatics for Soft Robotic Applications
,”
Soft Robot.
,
3
(
3
), pp.
144
158
. 10.1089/soro.2016.0030
24.
Ouyang
,
L.
,
Highley
,
C. B.
,
Rodell
,
C. B.
,
Sun
,
W.
, and
Burdick
,
J. A.
,
2016
, “
3D Printing of Shear-Thinning Hyaluronic Acid Hydrogels With Secondary Cross-Linking
,”
ACS Biomater. Sci. Eng.
,
2
(
10
), pp.
1743
1751
. 10.1021/acsbiomaterials.6b00158
25.
Ouyang
,
L.
,
Highley
,
C. B.
,
Sun
,
W.
, and
Burdick
,
J. A.
,
2017
, “
A Generalizable Strategy for the 3D Bioprinting of Hydrogels From Nonviscous Photo-Crosslinkable Inks
,”
Adv. Mater.
,
29
(
8
), p.
1604983
. 10.1002/adma.201604983
26.
Chen
,
Z.
,
Zhao
,
D.
,
Liu
,
B.
,
Nian
,
G.
,
Li
,
X.
,
Yin
,
J.
,
Qu
,
S.
, and
Yang
,
W.
,
2019
, “
3D Printing of Multifunctional Hydrogels
,”
Adv. Funct. Mater.
,
29
(
20
), p.
1900971
. 10.1002/adfm.201900971
27.
Lind
,
J. U.
,
Busbee
,
T. A.
,
Valentine
,
A. D.
,
Pasqualini
,
F. S.
,
Yuan
,
H.
,
Yadid
,
M.
,
Park
,
S.-J.
,
Kotikian
,
A.
,
Nesmith
,
A. P.
,
Campbell
,
P. H.
,
Vlassak
,
J. J.
,
Lewis
,
J. A.
, and
Parker
,
K. K.
,
2017
, “
Instrumented Cardiac Microphysiological Devices Via Multimaterial Three-Dimensional Printing
,”
Nat. Mater.
,
16
(
3
), pp.
303
308
. 10.1038/nmat4782
28.
Zhou
,
L.
,
Gao
,
Q.
,
Fu
,
J.
,
Chen
,
Q.
,
Zhu
,
J.
,
Sun
,
Y.
, and
He
,
Y.
,
2019
, “
Multimaterial 3D Printing of Highly Stretchable Silicone Elastomer
,”
ACS Appl. Mater. Interfaces
,
11
(
26
), pp.
23573
23583
. 10.1021/acsami.9b04873
29.
He
,
Y.
,
Yang
,
F.
,
Zhao
,
H.
,
Gao
,
Q.
,
Xia
,
B.
, and
Fu
,
J.
,
2016
, “
Research on the Printability of Hydrogels in 3D Bioprinting
,”
Sci. Rep.
,
6
(
1
), p.
29977
. 10.1038/srep29977
30.
Colosi
,
C.
,
Shin
,
S. R.
,
Manoharan
,
V.
,
Massa
,
S.
,
Costantini
,
M.
,
Barbetta
,
A.
,
Dokmeci
,
M. R.
,
Dentini
,
M.
, and
Khademhosseini
,
A.
,
2016
, “
Microfluidic Bioprinting of Heterogeneous 3D Tissue Constructs Using Low-Viscosity Bioink
,”
Adv. Mater.
,
28
(
4
), pp.
677
684
. 10.1002/adma.201503310
31.
Wilson
,
S. A.
,
Cross
,
L. M.
,
Peak
,
C. W.
, and
Gaharwar
,
A. K.
,
2017
, “
Shear-Thinning and Thermo-Reversible Nanoengineered Inks for 3D Bioprinting
,”
ACS Appl. Mater. Interfaces
,
9
(
50
), pp.
43449
43458
. 10.1021/acsami.7b13602
32.
Gohl
,
J.
,
Markstedt
,
K.
,
Mark
,
A.
,
Hakansson
,
K.
,
Gatenholm
,
P.
, and
Edevik
,
F.
,
2018
, “
Simulations of 3D Bioprinting: Predicting Bioprintability of Nanofibrillar Inks
,”
Biofabrication
,
10
(
3
), p.
034105
. 10.1088/1758-5090/aac872
33.
Li
,
H.
,
Liu
,
S.
, and
Lin
,
L.
, “
Rheological Study on 3D Printability of Alginate Hydrogel and Effect of Graphene Oxide
,”
Int. J. Bioprint.
,
2
(
2
), pp.
54
66
.
34.
Yuk
,
H.
, and
Zhao
,
X.
,
2018
, “
A New 3D Printing Strategy by Harnessing Deformation, Instability, and Fracture of Viscoelastic Inks
,”
Adv. Mater.
,
30
(
6
), p.
1704028
. 10.1002/adma.201704028
35.
Li
,
X.
,
Zhang
,
J. M.
,
Yi
,
X.
,
Huang
,
Z.
,
Lv
,
P.
, and
Duan
,
H.
,
2019
, “
Multimaterial 3D Printing: Multimaterial Microfluidic 3D Printing of Textured Composites With Liquid Inclusions
,”
Adv. Sci.
,
6
(
3
), p.
1970018
. 10.1002/advs.201970018
36.
Tanaka
,
T.
, and
Fillmore
,
D. J.
,
1979
, “
Kinetics of Swelling of Gels
,”
J. Chem. Phys.
,
70
(
3
), pp.
1214
1218
. 10.1063/1.437602
37.
Tawk
,
C.
,
Panhuis
,
M. I. H.
,
Spinks
,
G. M.
, and
Alici
,
G.
,
2018
, “
Bioinspired 3D Printable Soft Vacuum Actuators for Locomotion Robots, Grippers and Artificial Muscles
,”
Soft Rob.
,
5
(
6
), pp.
685
694
. 10.1089/soro.2018.0021
38.
Al-Rubaiai
,
M.
,
Pinto
,
T.
,
Qian
,
C.
, and
Tan
,
X.
,
2019
, “
Soft Actuators with Stiffness and Shape Modulation Using 3D-Printed Conductive Polylactic Acid Material
,”
Soft Rob.
,
6
(
3
), pp.
318
332
. 10.1089/soro.2018.0056
39.
Zhang
,
L.
,
Petit
,
T.
,
Lu
,
Y.
,
Kratochvil
,
B. E.
,
Peyer
,
K. E.
,
Pei
,
R.
,
Lou
,
J.
, and
Nelson
,
B. J.
,
2010
, “
Controlled Propulsion and Cargo Transport of Rotating Nickel Nanowires Near a Patterned Solid Surface
,”
ACS Nano
,
4
(
10
), pp.
6228
6234
. 10.1021/nn101861n
40.
Lee
,
H.
,
Kim
,
H.
,
Ha
,
I.
,
Jung
,
J.
,
Won
,
P.
,
Cho
,
H.
,
Yeo
,
J.
,
Hong
,
S.
,
Han
,
S.
,
Kwon
,
J.
,
Cho
,
K.-J.
, and
Ko
,
H.
, “
Directional Shape Morphing Transparent Walking Soft Robot
,”
Soft Rob.
,
6
(
6
), pp.
760
767
. 10.1089/soro.2018.0164
41.
Erb
,
R. M.
,
Martin
,
J. J.
,
Soheilian
,
R.
,
Pan
,
C.
, and
Barber
,
J. R.
,
2016
, “
Actuating Soft Matter With Magnetic Torque
,”
Adv. Funct. Mater.
,
26
(
22
), pp.
3859
3880
. 10.1002/adfm.201504699
42.
Sing
,
C. E.
,
Schmid
,
L.
,
Schneider
,
M. F.
,
Franke
,
T.
, and
Alexander-Katz
,
A.
,
2010
, “
Controlled Surface-Induced Flows From the Motion of Self-Assembled Colloidal Walkers
,”
Proc. Natl. Acad. Sci. U. S. A.
,
107
(
2
), pp.
535
540
. 10.1073/pnas.0906489107
43.
Kim
,
Y.
,
Yuk
,
H.
,
Zhao
,
R.
,
Chester
,
S. A.
, and
Zhao
,
X.
,
2018
, “
Printing Ferromagnetic Domains for Untethered Fast-Transforming Soft Materials
,”
Nature
,
558
(
7709
), pp.
274
279
. 10.1038/s41586-018-0185-0
44.
Hu
,
W.
,
Lum
,
G. Z.
,
Mastrangeli
,
M.
, and
Sitti
,
M.
,
2018
, “
Small-Scale Soft-Bodied Robot with Multimodal Locomotion
,”
Nature
,
554
(
7690
), pp.
81
85
. 10.1038/nature25443
45.
Joyee
,
E. B.
, and
Pan
,
Y.
,
2019
, “
A Fully Three-Dimensional Printed Inchworm-Inspired Soft Robot With Magnetic Actuation
,”
Soft Rob.
,
6
(
3
), pp.
333
345
. 10.1089/soro.2018.0082
46.
Hong
,
W.
,
Zhao
,
X.
,
Zhou
,
J.
, and
Suo
,
Z.
,
2008
, “
A Theory of Coupled Diffusion and Large Deformation in Polymeric Gels
,”
J. Mech. Phys. Solids
,
56
(
5
), pp.
1779
1793
. 10.1016/j.jmps.2007.11.010
47.
Wang
,
X.
, and
Hong
,
W.
,
2012
, “
A Visco-Poroelastic Theory for Polymeric Gels
,”
Proc. R. Soc. A-Math. Phys. Eng. Sci.
,
468
(
2148
), pp.
3824
3841
. 10.1098/rspa.2012.0385
48.
Flory
,
P. J.
, and
Rehner
,
J.
,
1943
, “
Statistical Mechanics of Cross-Linked Polymer Networks I. Rubberlike Elasticity
,”
J. Chem. Phys.
,
11
(
11
), pp.
512
520
. 10.1063/1.1723791
49.
Flory
,
P. J.
,
1942
, “
Thermodynamics of High Polymer Solutions
,”
J. Chem. Phys.
,
10
(
1
), pp.
51
61
. 10.1063/1.1723621
50.
Huggins
,
M. L.
,
1941
, “
Solutions of Long Chain Compounds
,”
J. Chem. Phys.
,
9
(
5
), p.
440
. 10.1063/1.1750930
You do not currently have access to this content.