Based on the symplectic transfer-matrix method, this paper develops a novel approach for the analysis of beams presenting periodic heterogeneities along their span. The approach, rooted in the Hamiltonian formalism, generalizes developments presented earlier by the authors for spanwise uniform beams. Starting from the kinematics of a unit cell, the approach proceeds through a set of structure-preserving symplectic transformations and decomposes the solution into its central and extremity components. The geometric configuration and material properties of the unit cell may be arbitrarily complex as long as the cell's two end cross sections are identical. The proposed approach identifies an equivalent, homogenized beam with uniform curvatures and sectional stiffness characteristics along its span. Numerical examples are presented to demonstrate the capabilities of the analysis. Predictions are found to be in excellent agreement with those obtained by full finite-element analysis.

References

1.
Kolpakov
,
A. G.
,
1991
, “
Calculation of the Characteristics of Thin Elastic Rods With a Periodic Structure
,”
J. Appl. Math. Mech.
,
55
(
3
), pp.
358
365
.
2.
Kalamkarov
,
A. L.
,
Andrianov
,
I. V.
, and
Danishevs'kyy
,
V. V.
,
2009
, “
Asymptotic Homogenization of Composite Materials and Structures
,”
ASME Appl. Mech. Rev.
,
62
(
3
), p.
030802
.
3.
Yi
,
S. N.
,
Xu
,
L.
,
Cheng
,
G. D.
, and
Cai
,
Y. W.
,
2015
, “
FEM Formulation of Homogenization Method for Effective Properties of Periodic Heterogeneous Beam and Size Effect of Basic Cell in Thickness Direction
,”
Comput. Struct.
,
156
, pp.
1
11
.
4.
Buannic
,
N.
, and
Cartraud
,
P.
,
2001
, “
Higher-Order Effective Modeling of Periodic Heterogeneous Beams—I: Asymptotic Expansion Method
,”
Int. J. Solids Struct.
,
38
(
40–41
), pp.
7139
7161
.
5.
Buannic
,
N.
, and
Cartraud
,
P.
,
2001
, “
Higher-Order Effective Modeling of Periodic Heterogeneous Beams. II. Derivation of the Proper Boundary Conditions for the Interior Asymptotic Solution
,”
Int. J. Solids Struct.
,
38
(
40–41
), pp.
7163
7180
.
6.
Messager
,
T.
, and
Cartraud
,
P.
,
2008
, “
Homogenization of Helical Beam-Like Structures: Application to Angle-Walled Carbon Nanotubes
,”
Comput. Mech.
,
41
(
2
), pp.
335
346
.
7.
Renton
,
J. D.
,
1984
, “
The Beam-Like Behavior of Space Trusses
,”
AIAA J.
,
22
, pp.
273
280
.
8.
Stephen
,
N. G.
, and
Wang
,
P. J.
,
1996
, “
On Saint-Venant's Principle in Pin-Jointed Frameworks
,”
Int. J. Solids Struct.
,
33
(
1
), pp.
79
97
.
9.
Stephen
,
N. G.
,
2006
, “
Transfer Matrix Analysis of the Elastostatics of One-Dimensional Repetitive Structures
,”
Proc. R. Soc. London A
,
462
(
2072
), pp.
2245
2270
.
10.
Stephen
,
N. G.
, and
Ghosh
,
S.
,
2005
, “
Eigenanalysis and Continuum Modelling of a Curved Repetitive Beam-Like Structure
,”
Int. J. Mech. Sci.
,
47
(
12
), pp.
1854
1873
.
11.
Stephen
,
N. G.
, and
Zhang
,
Y.
,
2006
, “
Eigenanalysis and Continuum Modelling of Pre-Twisted Repetitive Beam-Like Structures
,”
Int. J. Solids Struct.
,
43
(
13
), pp.
3832
3855
.
12.
Stephen
,
N. G.
,
2009
, “
Repetitive Beam-Like Structures: Distributed Loading and Intermediate Support
,”
Int. J. Solids Struct.
,
46
(
20
), pp.
3664
3668
.
13.
Mielke
,
A.
,
1988
, “
Saint-Venant's Problem and Semi-Inverse Solutions in Nonlinear Elasticity
,”
Arch. Ration. Mech. Anal.
,
102
(
3
), pp.
205
229
.
14.
Mielke
,
A.
,
1990
, “
Normal Hyperbolicity of Center Manifolds and Saint-Venant's Principle
,”
Arch. Ration. Mech. Anal.
,
110
(
4
), pp.
353
372
.
15.
Zhong
,
W. X.
,
1991
, “
Plane Elasticity Problem in Strip Domain and Hamiltonian System
,”
J. Dalian Univ. Technol.
,
60
(
4
), pp.
373
384
.
16.
Zhong
,
W. X.
,
1995
,
A New Systematic Methodology for Theory of Elasticity
,
Dalian University of Technology Press
,
Dalian, China
.
17.
Druz
,
A. N.
, and
Ustinov
,
Y. A.
,
1996
, “
Green's Tensor for an Elastic Cylinder and Its Applications in the Development of the Saint-Venant Theory
,”
J. Appl. Math. Mech.
,
60
(
1
), pp.
97
104
.
18.
Bauchau
,
O. A.
, and
Han
,
S. L.
,
2014
, “
Three-Dimensional Beam Theory for Flexible Multibody Dynamics
,”
ASME J. Comput. Nonlinear Dyn.
,
9
(
4
), p.
041011
.
19.
Han
,
S. L.
, and
Bauchau
,
O. A.
,
2015
, “
Nonlinear Three-Dimensional Beam Theory for Flexible Multibody Dynamics
,”
Multibody Syst. Dyn.
,
34
(
3
), pp.
211
242
.
20.
Han
,
S. L.
, and
Bauchau
,
O. A.
,
2016
, “
On the Saint-Venant's Problem for Helicoidal Beams
,”
ASME J. Appl. Mech.
,
83
(
2
), p.
021009
.
21.
Han
,
S. L.
, and
Bauchau
,
O. A.
,
2016
, “
On the Analysis of Thin-Walled Beams Based on Hamiltonian Formalism
,”
Comput. Struct.
,
170
(
1
), pp.
37
48
.
22.
Zhong
,
W. X.
,
2004
,
Duality System in Applied Mechanics and Optimal Control
,
Kluwer Academic Publishers
,
Boston, MA
.
23.
Bauchau
,
O. A.
,
2011
,
Flexible Multibody Dynamics
,
Springer, Dordrecht
,
The Netherlands
.
24.
Lanczos
,
C.
,
1970
,
The Variational Principles of Mechanics
,
Dover Publications
,
New York
.
25.
Karpov
,
E. G.
,
Dorofeev
,
D. L.
, and
Stephen
,
N. G.
,
2002
, “
Characteristic Solutions for the Statics of Repetitive Beam-Like Trusses
,”
Int. J. Mech. Sci.
,
44
(
7
), pp.
1363
1379
.
26.
Stephen
,
N. G.
,
2004
, “
State Space Elastostatics of Prismatic Structures
,”
Int. J. Mech. Sci.
,
46
(
9
), pp.
1327
1347
.
27.
Ghiringhelli
,
G. L.
, and
Mantegazza
,
P.
,
1994
, “
Linear, Straight and Untwisted Anisotropic Beam Section Properties From Solid Finite Elements
,”
Compos. Eng.
,
4
(
12
), pp.
1225
1239
.
28.
Giavotto
,
V.
,
Borri
,
M.
,
Mantegazza
,
P.
,
Ghiringhelli
,
G.
,
Carmaschi
,
V.
,
Maffioli
,
G. C.
, and
Mussi
,
F.
,
1983
, “
Anisotropic Beam Theory and Applications
,”
Comput. Struct.
,
16
(
1–4
), pp.
403
413
.
29.
Borri
,
M.
, and
Merlini
,
T.
,
1986
, “
A Large Displacement Formulation for Anisotropic Beam Analysis
,”
Meccanica
,
21
(
1
), pp.
30
37
.
30.
El Fatmi
,
R.
, and
Zenzri
,
H.
,
2004
, “
A Numerical Method for the Exact Elastic Beam Theory. Applications to Homogeneous and Composite Beams
,”
Int. J. Solids Struct.
,
41
(
9–10
), pp.
2521
2537
.
31.
Ladevèze
,
P.
, and
Simmonds
,
J.
,
1998
, “
New Concepts for Linear Beam Theory With Arbitrary Geometry and Loading
,”
Eur. J. Mech. A/Solids
,
17
(
3
), pp.
377
402
.
32.
El Fatmi
,
R.
, and
Zenzri
,
H.
,
2002
, “
On the Structural Behavior and the Saint-Venant Solution in the Exact Beam Theory: Application to Laminated Composite Beams
,”
Comput. Struct.
,
80
(
16–17
), pp.
1441
1456
.
33.
Borri
,
M.
, and
Bottasso
,
C. L.
,
1993
, “
A General Framework for Interpreting Time Finite Element Formulations
,”
Comput. Mech.
,
13
(
3
), pp.
133
142
.
34.
Yao
,
W. A.
,
Zhong
,
W. X.
, and
Lim
,
C. W.
,
2009
,
Symplectic Elasticity
,
World Scientific Publishing
,
Hackensack, NJ
.
You do not currently have access to this content.