Stretchable electronics offer soft, biocompatible mechanical properties; these same properties make them susceptible to device failure associated with physical impact. This paper studies designs for stretchable electronics that resist failure from impacts due to incorporation of a viscoelastic encapsulation layer. Results indicate that the impact resistance depends on the thickness and viscoelastic properties of the encapsulation layer, as well as the duration of impact. An analytic model for the critical thickness of the encapsulation layer is established. It is shown that a commercially available, low modulus silicone material offers viscous properties that make it a good candidate as the encapsulation layer for stretchable electronics.
Issue Section:
Research Papers
Topics:
Design,
Electronics,
Storage,
Stress,
Viscoelasticity,
Failure,
Constitutive equations,
Silicones
References
1.
Khang
, D. Y.
, Jiang
, H. Q.
, Huang
, Y.
, and Rogers
, J. A.
, 2006
, “A Stretchable Form of Single-Crystal Silicon for High-Performance Electronics on Rubber Substrates
,” Science
, 311
(5758
), pp. 208
–212
.2.
Rogers
, J. A.
, Someya
, T.
, and Huang
, Y.
, 2010
, “Materials and Mechanics for Stretchable Electronics
,” Science
, 327
(5973
), pp. 1603
–1607
.3.
Zhang
, Y. Y.
, Chen
, Y. S.
, Lu
, B. W.
, Lü
, C. F.
, and Feng
, X.
, 2016
, “Electromechanical Modeling of Energy Harvesting From the Motion of Left Ventricle in Closed Chest Environment
,” ASME J. Appl. Mech.
, 83
(6
), p. 061007
.4.
Wang
, L.
, and Lu
, N. S.
, 2016
, “Conformability of a Thin Elastic Membrane Laminated on a Soft Substrate With Slightly Wavy Surface
,” ASME J. Appl. Mech.
, 83
(4
), p. 041007
.5.
Chen
, Y. L.
, Zhu
, Y.
, Chen
, X.
, and Liu
, Y. L.
, 2016
, “Mechanism of the Transition From In-Plane Buckling to Helical Buckling for a Stiff Nanowire on an Elastomeric Substrate
,” ASME J. Appl. Mech.
, 83
(4
), p. 041011
.6.
Meng
, X. H.
, Liu
, B. Y.
, Wang
, Y.
, Zhang
, T. H.
, and Xiao
, J. L.
, 2016
, “Third-Order Polynomials Model for Analyzing Multilayer Hard/Soft Materials in Flexible Electronics
,” ASME J. Appl. Mech.
, 83
(8
), p. 081011
.7.
Shi
, Y.
, Rogers
, J. A.
, Gao
, C. F.
, and Huang
, Y.
, 2014
, “Multiple Neutral Axes in Bending of a Multiple-Layer Beam With Extremely Different Elastic Properties
,” ASME J. Appl. Mech.
, 81
(11
), p. 114501
.8.
Shi
, X.
, Xu
, R.
, Li
, Y.
, Zhang
, Y.
, Ren
, Z.
, Gu
, J.
, Rogers
, J. A.
, and Huang
, Y.
, 2014
, “Mechanics Design for Stretchable, High Areal Coverage GaAs Solar Module on an Ultrathin Substrate
,” ASME J. Appl. Mech.
, 81
(12
), p. 124502
.9.
Liu
, Z.
, Cheng
, H.
, and Wu
, J.
, 2014
, “Mechanics of Solar Module on Structured Substrates
,” ASME J. Appl. Mech.
, 81
(6
), p. 064502
.10.
Cheng
, H.
, and Song
, J.
, 2014
, “A Simply Analytic Study of Buckled Thin Films on Compliant Substrates
,” ASME J. Appl. Mech.
, 81
(2
), p. 024501
.11.
Jablonski
, M.
, Lucchini
, R.
, Bossuyt
, F.
, Vervust
, T.
, Vanfleteren
, J.
, De Vries
, J. W. C.
, Vena
, P.
, and Gonzalez
, M.
, 2015
, “Impact of Geometry on Stretchable Meandered Interconnect Uniaxial Tensile Extension Fatigue Reliability
,” Microelectron. Reliab.
, 55
(1
), pp. 143
–154
.12.
Hsu
, Y. Y.
, Papakyrikos
, C.
, Liu
, D.
, Wang
, X. Y.
, Raj
, M.
, Zhang
, B. S.
, and Ghaffari
, R.
, 2014
, “Design for Reliability of Multi-Layer Stretchable Interconnects
,” J. Micromech. Microeng.
, 24
(9
), p. 095014
.13.
Nah
, J. W.
, Ren
, F.
, Tu
, K. N.
, Venk
, S.
, and Camara
, G.
, 2006
, “Electromigration in Pb-Free Flip Chip Solder Joints on Flexible Substrates
,” J. Appl. Phys.
, 99
(2
), p. 023520
.14.
Putz
, B.
, Glushko
, O.
, and Cordill
, M. J.
, 2016
, “Electromigration in Gold Films on Flexible Polyimide Substrates as a Self-Healing Mechanism
,” Mater. Res. Lett.
, 4
(1
), pp. 43
–47
.15.
Dagdeviren
, C.
, Shi
, Y.
, Joe
, P.
, Ghaffari
, R.
, Balooch
, G.
, Usgaonkar
, K.
, Gur
, O.
, Tran
, P. L.
, Crosby
, J. R.
, Meyer
, M.
, Su
, Y.
, Webb
, R. C.
, Tedesco
, A. S.
, Slepian
, M. J.
, Huang
, Y.
, and Rogers
, J. A.
, 2015
, “Conformal Piezoelectric Systems for Clinical and Experimental Characterization of Soft Tissue Biomechanics
,” Nat. Mater.
, 14
(7
), pp. 728
–736
.16.
Yuan
, J. H.
, Shi
, Y.
, Pharr
, M.
, Feng
, X.
, Rogers
, J. A.
, and Huang
, Y.
, 2016
, “A Mechanics Model for Sensors Imperfectly Bonded to the Skin for Determination of the Young's Moduli of Epidermis and Dermis
,” ASME J. Appl. Mech.
, 83
(8
), p. 084501
.17.
Shi
, Y.
, Dagdeviren
, C.
, Rogers
, J. A.
, Gao
, C. F.
, and Huang
, Y.
, 2015
, “An Analytic Model for Skin Modulus Measurement Via Conformal Piezoelectric Systems
,” ASME J. Appl. Mech.
, 82
(9
), p. 091007
.18.
Dai
, L. C.
, Huang
, Y.
, Chen
, H.
, Feng
, X.
, and Fang
, D. N.
, 2015
, “Transition Among Failure Modes of the Bending System With a Stiff Film on a Soft Substrate
,” Appl. Phys. Lett.
, 106
(2
), p. 021905
.19.
Liu
, H. M.
, Liu
, Z. X.
, Xu
, Z. L.
, Yin
, Z. P.
, Huang
, Y. A.
, and Chen
, J. K.
, 2015
, “Competing Fracture of Thin-Chip Transferring From/Onto Prestrained Compliant Substrate
,” ASME J. Appl. Mech.
, 82
(10
), p. 101012
.20.
Cheng
, H. Y.
, and Wang
, S. D.
, 2014
, “Mechanics of Interfacial Delamination in Epidermal Electronics Systems
,” ASME J. Appl. Mech.
, 81
(4
), p. 044501
.21.
Guo
, G. D.
, and Zhu
, Y.
, 2015
, “Cohesive-Shear-Lag Modeling of Interfacial Stress Transfer Between a Monolayer Graphene and a Polymer Substrate
,” ASME J. Appl. Mech.
, 82
(3
), p. 031005
.22.
Wang
, Q.
, and Zhao
, X.
, 2014
, “Phase Diagrams of Instabilities in Compressed Film-Substrate Systems
,” ASME J. Appl. Mech.
, 81
(5
), p. 051004
.23.
Placet
, V.
, and Delobelle
, P.
, 2015
, “Mechanical Properties of Bulk Polydimethylsiloxane for Microfluidics Over a Large Range of Frequencies and Aging Times
,” J. Micromech. Microeng.
, 25
(3
), p. 035009
.24.
Havriliak
, S.
, and Negami
, S.
, 1967
, “A Complex Plane Representation of Dielectric and Mechanical Relaxation Processes in Some Polymers
,” Polymer
, 8
, pp. 161
–210
.25.
Gradshteyn
, I. S.
, and Ryzhik
, I. M.
, 2007
, Table of Integrals, Series, and Products
, 7th ed., Elsevier
, Singapore
.26.
Jang
, K. I.
, Chung
, H. U.
, Xu
, S.
, Lee
, C. H.
, Luan
, H. W.
, Jeong
, J.
, Cheng
, H. Y.
, Kim
, G. T.
, Han
, S. Y.
, Lee
, J. W.
, Kim
, J.
, Cho
, M.
, Miao
, F. X.
, Yang
, Y. Y.
, Jung
, H. N.
, Flavin
, M.
, Liu
, H.
, Kong
, G. W.
, Yu
, K. J.
, Rhee
, S. I.
, Chung
, J.
, Kim
, B.
, Kwak
, J. W.
, Yun
, M. H.
, Kim
, J. Y.
, Song
, Y. M.
, Paik
, U.
, Zhang
, Y. H.
, Huang
, Y.
, and Rogers
, J. A.
, 2015
, “Soft Network Composite Materials With Deterministic and Bio-Inspired Designs
,” Nat. Commun.
, 6
, p. 6566
.Copyright © 2016 by ASME
You do not currently have access to this content.