Recent in situ TEM experiments observed that single crystalline gold particles with diameter ranging from 300 to 700 nm suddenly collapse, accompanying numerous dislocations escaping from the free surface during a flat punch pushing toward the particle. This collapse is catastrophic for the microdevices in service. In this work, we numerically and theoretically analyze the collapse mechanisms of this kind of “sensitive material.” First, by carrying out molecular dynamics (MD) simulations and finite element (FEM) analysis, we conclude that the strong strain burst in the collapse is derived from the robust emissions of plentiful pile-up dislocations in a particular area. Then, on the basis of numerical analyses, a theoretical model based on the virtual work principle is developed to predict the load–displacement curve during the indentation and reveal the energy dissipation and transformation before the particle collapse. Furthermore, a micromechanics-based dislocation pile-up model is established to quantitatively interpret the mechanism of particle collapse. Based on these studies, we propose the dislocation avalanche at the microscale depends not only on the peak stress but also on the stress gradients. The research is helpful for the design of reliable microdevices.

References

1.
Greer
,
J. R.
, and
De Hosson
,
J. T. M.
,
2011
, “
Plasticity in Small-Sized Metallic Systems: Intrinsic Versus Extrinsic Size Effect
,”
Prog. Mater. Sci.
,
56
(
6
), pp.
654
724
.10.1016/j.pmatsci.2011.01.005
2.
Kim
,
J.-Y.
,
Jang
,
D.
, and
Greer
,
J. R.
,
2012
, “
Crystallographic Orientation and Size Dependence of Tension–Compression Asymmetry in Molybdenum Nano-Pillars
,”
Int. J. Plast.
,
28
(
1
), pp.
46
52
.10.1016/j.ijplas.2011.05.015
3.
Gu
,
R.
, and
Ngan
,
A. H. W.
,
2013
, “
Dislocation Arrangement in Small Crystal Volumes Determines Power-Law Size Dependence of Yield Strength
,”
J. Mech. Phys. Solids
,
61
(
6
), pp.
1531
1542
.10.1016/j.jmps.2012.10.002
4.
Greer
,
J. R.
,
Oliver
,
W. C.
, and
Nix
,
W. D.
,
2005
, “
Size Dependence of Mechanical Properties of Gold at the Micron Scale in the Absence of Strain Gradients
,”
Acta Mater.
,
53
(
6
), pp.
1821
1830
.10.1016/j.actamat.2004.12.031
5.
Heyer
,
J. K.
,
Brinckmann
,
S.
,
Pfetzing-Micklich
,
J.
, and
Eggeler
,
G.
,
2014
, “
Microshear Deformation of Gold Single Crystals
,”
Acta Mater.
,
62
, pp.
225
238
.10.1016/j.actamat.2013.10.002
6.
Argon
,
A. S.
,
2013
, “
Strain Avalanches in Plasticity
,”
Philos. Mag.
,
93
(
28–30
), pp.
3795
3808
.10.1080/14786435.2013.798049
7.
Wang
,
Z.-J.
,
Li
,
Q.-J.
,
Shan
,
Z.-W.
,
Li
,
J.
,
Sun
,
J.
, and
Ma
,
E.
,
2012
, “
Sample Size Effects on the Large Strain Bursts in Submicron Aluminum Pillars
,”
Appl. Phys. Lett.
,
100
(
7
), p.
071906
.10.1063/1.3681582
8.
Gu
,
R.
, and
Ngan
,
A. H. W.
,
2012
, “
Effects of Pre-Straining and Coating on Plastic Deformation of Aluminum Micropillars
,”
Acta Mater.
,
60
(
17
), pp.
6102
6111
.10.1016/j.actamat.2012.07.048
9.
Kiener
,
D.
,
Hosemann
,
P.
,
Maloy
,
S. A.
, and
Minor
,
A. M.
,
2011
, “
In Situ Nanocompression Testing of Irradiated Copper
,”
Nature Mater.
,
10
(
8
), pp.
608
613
.10.1038/nmat3055
10.
Zaiser
,
M.
,
Schwerdtfeger
,
J.
,
Schneider
,
A. S.
,
Frick
,
C. P.
,
Clark
,
B. G.
,
Gruber
,
P. A.
, and
Arzt
,
E.
,
2008
, “
Strain Bursts in Plastically Deforming Molybdenum Micro- and Nanopillars
,”
Philos. Mag.
,
88
(
30–32
), pp.
3861
3874
.10.1080/14786430802132522
11.
Suresh
,
S.
,
Nieh
,
T.-G.
, and
Choi
,
B. W.
,
1999
, “
Nano-Indentation of Copper Thin Films on Silicon Substrates
,”
Scr. Mater.
,
41
(
9
), pp.
951
957
.10.1016/S1359-6462(99)00245-6
12.
Gouldstone
,
A.
,
Kon
,
H.-J.
,
Zeng
,
K.-Y.
,
Giannakopoulos
,
A. E.
, and
Suresh
,
S.
,
2000
, “
Discrete and Continuous Deformation During Nanoindentation of Thin Films
,”
Acta Mater.
,
48
(9), pp.
2277
2295
.10.1016/S1359-6454(00)00009-4
13.
Uchic
,
M. D.
,
Dimiduk
,
D. M.
,
Florando
,
J. N.
, and
Nix
,
W. D.
,
2004
, “
Sample Dimensions Influence Strength and Crystal Plasticity
,”
Science
,
305
(
5686
), pp.
986
989
.10.1126/science.1098993
14.
Nix
,
W. D.
,
Greer
,
J. R.
,
Feng
,
G.
, and
Lilleodden
,
E. T.
,
2007
, “
Deformation at the Nanometer and Micrometer Length Scales: Effects of Strain Gradients and Dislocation Starvation
,”
Thin Solid Films
,
515
(
6
), pp.
3152
3157
.10.1016/j.tsf.2006.01.030
15.
Csikor
,
F. F.
,
Motz
,
C.
,
Weygand
,
D.
,
Zaiser
,
M.
, and
Zapperi
,
S.
,
2007
, “
Dislocation Avalanches, Strain Bursts, and the Problem of Plastic Forming at the Micrometer Scale
,”
Science
,
318
(
5848
), pp.
251
254
.10.1126/science.1143719
16.
Li
,
H.
,
Ngan
,
A. H. W.
, and
Wang
,
M. G.
,
2011
, “
Continuous Strain Bursts in Crystalline and Amorphous Metals During Plastic Deformation by Nanoindentation
,”
J. Mater. Res.
,
20
(
11
), pp.
3072
3081
.10.1557/JMR.2005.0379
17.
Zhou
,
C.
,
Biner
,
S.
, and
Lesar
,
R.
,
2010
, “
Simulations of the Effect of Surface Coatings on Plasticity at Small Scales
,”
Scr. Mater.
,
63
(
11
), pp.
1096
1099
.10.1016/j.scriptamat.2010.08.012
18.
Ispánovity
,
P. D.
,
Groma
,
I.
,
Györgyi
,
G.
,
Csikor
,
F. F.
, and
Weygand
,
D.
,
2010
, “
Submicron Plasticity: Yield Stress, Dislocation Avalanches, and Velocity Distribution
,”
Phys. Rev. Lett.
,
105
(
8
), p.
085503
.10.1103/PhysRevLett.105.085503
19.
Gerberich
,
W. W.
,
Mook
,
W. M.
,
Chambers
,
M. D.
,
Cordill
,
M. J.
,
Perrey
,
C. R.
,
Carter
,
C. B.
,
Miller
,
R. E.
,
Curtin
,
W. A.
,
Mukherjee
,
R.
, and
Girshick
,
S. L.
,
2006
, “
An Energy Balance Criterion for Nanoindentation-Induced Single and Multiple Dislocation Events
,”
ASME J. Appl. Mech.
,
73
(
2
), pp.
327
334
.10.1115/1.2125988
20.
Li
,
J.
,
Vliet
,
K. J. V.
,
Zhu
,
T.
,
Yip
,
S.
, and
Suresh
,
S.
,
2002
, “
Atomistic Mechanisms Governing Elastic Limit and Incipient Plasticity in Crystals
,”
Nature
,
418
(
18
), pp.
307
310
.10.1038/nature00865
21.
Tsuru
,
T.
,
Shibutani
,
Y.
, and
Kaji
,
Y.
,
2010
, “
Nanoscale Contact Plasticity of Crystalline Metal: Experiment and Analytical Investigation Via Atomistic and Discrete Dislocation Models
,”
Acta Mater.
,
58
(
8
), pp.
3096
3102
.10.1016/j.actamat.2010.01.048
22.
Van Vliet
,
K.
,
Li
,
J.
,
Zhu
,
T.
,
Yip
,
S.
, and
Suresh
,
S.
,
2003
, “
Quantifying the Early Stages of Plasticity Through Nanoscale Experiments and Simulations
,”
Phys. Rev. B
,
67
(
10
), p.
104105
.10.1103/PhysRevB.67.104105
23.
Xu
,
S.
,
Guo
,
Y. F.
, and
Ngan
,
A. H. W.
,
2013
, “
A Molecular Dynamics Study on the Orientation, Size, and Dislocation Confinement Effects on the Plastic Deformation of Al Nanopillars
,”
Int. J. Plast.
,
43
, pp.
116
127
.10.1016/j.ijplas.2012.11.002
24.
Weinberger
,
C. R.
, and
Cai
,
W.
,
2010
, “
Plasticity of Metal Wires in Torsion: Molecular Dynamics and Dislocation Dynamics Simulations
,”
J. Mech. Phys. Solids
,
58
(
7
), pp.
1011
1025
.10.1016/j.jmps.2010.04.010
25.
Ng
,
K. S.
, and
Ngan
,
A. H. W.
,
2008
, “
A Monte Carlo Model for the Intermittent Plasticity of Micro-Pillars
,”
Modell. Simul. Mater. Sci. Eng.
,
16
(
5
), p.
055004
.10.1088/0965-0393/16/5/055004
26.
Li
,
S.
,
Ren
,
B.
, and
Minaki
,
H.
,
2014
, “
Multiscale Crystal Defect Dynamics: A Dual-Lattice Process Zone Model
,”
Philos. Mag.
,
94
(
13
), pp.
1414
1450
.10.1080/14786435.2014.887859
27.
Cui
,
Y. N.
,
Lin
,
P.
,
Liu
,
Z. L.
, and
Zhuang
,
Z.
,
2014
, “
Theoretical and Numerical Investigations of Single Arm Dislocation Source Controlled Plastic Flow in FCC Micropillars
,”
Int. J. Plast.
,
55
, pp.
279
292
.10.1016/j.ijplas.2013.11.011
28.
Wang
,
Z.-J.
,
Shan
,
Z.-W.
,
Li
,
J.
,
Sun
,
J.
, and
Ma
,
E.
,
2012
, “
Pristine-to-Pristine Regime of Plastic Deformation in Submicron-Sized Single Crystal Gold Particles
,”
Acta Mater.
,
60
(
3
), pp.
1368
1377
.10.1016/j.actamat.2011.10.035
29.
Chuang Deng
,
F. S.
,
2009
, “
Near-Ideal Strength in Gold Nanowires Achieved Through Microstructural Design
,”
ACS Nano
,
3
(10), pp.
3001
3008
.10.1021/nn900668p
30.
Ogata
,
S.
,
Li
,
J.
,
Hirosaki
,
N.
,
Shibutani
,
Y.
, and
Yip
,
S.
,
2004
, “
Ideal Shear Strain of Metals and Ceramics
,”
Phys. Rev. B
,
70
(
10
), p.
104104
.10.1103/PhysRevB.70.104104
31.
Gall
,
K.
,
Diao
,
J.
, and
Dunn
,
M. L.
,
2004
, “
The Strength of Gold Nanowires
,”
Nano Lett.
,
4
(
12
), pp.
2431
2436
.10.1021/nl048456s
32.
Volkert
,
C. A.
, and
Lilleodden
,
E. T.
,
2006
, “
Size Effects in the Deformation of Sub-Micron Au Columns
,”
Philos. Mag.
,
86
(
33–35
), pp.
5567
5579
.10.1080/14786430600567739
33.
Plimpton
,
S.
,
1995
, “
Fast Parallel Algorithms for Short-Range Molecular Dynamics
,”
J. Comput. Phys.
,
117
(
1
), pp.
1
19
.10.1006/jcph.1995.1039
34.
Foiles
,
S.
,
Baskes
,
M.
, and
Daw
,
M.
,
1986
, “
Embedded-Atom-Method Functions for the FCC Metals Cu, Ag, Au, Ni, Pd, Pt, and Their Alloys
,”
Phys. Rev. B
,
33
(
12
), pp.
7983
7991
.10.1103/PhysRevB.33.7983
35.
Gerberich
,
W. W.
,
2006
, “
An Energy Balance Criterion for Nanoindentation-Induced Single and Multiple Dislocation Events
,”
ASME J. Appl. Mech.
,
73
(
2
), pp.
327
334
.10.1115/1.2125988
36.
Akarapu
,
S.
, and
Hirth
,
J. P.
,
2013
, “
Dislocation Pile-Ups in Stress Gradients Revisited
,”
Acta Mater.
,
61
(
10
), pp.
3621
3629
.10.1016/j.actamat.2013.02.049
You do not currently have access to this content.