A simple analytical (“mathematical”) predictive model is developed with an objective to establish the condition of elastic stability for a compressed cantilever beam (rod) of finite length lying on a continuous elastic foundation. Based on the developed model, practical guidelines are provided for choosing the adequate length of the beam and/or its flexural rigidity and/or the spring constant of the foundation, so that the beam remains elastically stable. The obtained solution can be used, perhaps with some additional assumptions and modifications, for the assessment of the critical force for high-modulus and low-expansion fibers (including nano-fibers) embedded into a low-modulus and high-expansion medium (matrix). Composite systems are often fabricated at elevated temperatures and operated at lower temperature conditions. It is imperative that an embedded fiber remains elastically stable, i.e., does not buckle as a result of the thermal contraction mismatch of its material with the material of the matrix. If buckling occurs, the functional (e.g., thermal) and/or the structural (“physical”) performance of the composite might be compromised.

References

1.
Weeton
,
J. W.
,
Peters
,
D. M.
, and
Thomas
,
K.L.
, 1987, “
Engineers’ Guide to Composite Materials
,”
Am. Soc. Metals
.
2.
Mallick
,
P. K.
, 1993,
Fiber-Reinforced Composites: Materials, Manufacturing, and Design
, 2nd ed.,
Marcel Dekker
,
New York
.
3.
Hyer
,
M. W.
, 1998,
Stress Analysis of Fiber-Reinforced Composite Materials
,
McGraw-Hill
,
New York
.
4.
Odegard
,
G. M.
,
Zatesh
,
T. S.
,
Wisea
,
K. E.
,
Paska
,
C.
, and
Siochic
,
E. J.
, 2001, “
Constitutive Modeling of Nanotube-Reinforced Polymer Composite Systems
,” Technical Report,
NASA Langley Technical Report Server
.
5.
Lau
,
K.T.
and
Shi
,
S.Q.
, 2002, “
Failure Mechanisms of Carbon Nanotube/Epoxy Composites Pre-Treated in Different Temperature Environments
,”
Carbon
,
40
, pp.
2965
2968
.
6.
Odegard
,
G. M.
,
Zatesh
,
T. S.
,
Wisea
,
K. E.
,
Paska
,
C.
, and
Siochic
,
E. J.
, 2003, “
Constitutive Modeling of Nanotube-Reinforced Polymer Composites
,”
Compos. Sci. Techn.
,
63
, pp.
1671
1687
.
7.
Ye
,
H.
,
Lam
,
H.
,
Titchenal
,
N.
,
Gogosti
,
Y.
, and
Ko
,
F.
, 2004, “
Reinforcement and Rupture Behavior of CNT-Polymer Nanofibers
,”
Appl. Phys. Lett.
,
85
, p.
1775
.
8.
Xu
,
Y.
,
Zhang
,
Y.
,
Suhir
,
E.
, and
Wang
,
X.
, 2006, “
Thermal Properties of Carbon Nanotube Array for Integrated Circuits Cooling
,”
J. Appl. Phys.
,
100
, p.
074302
.
9.
Zhang
,
Y.
,
Xu
,
Y.
, and
Suhir
,
E.
, 2006, “
Effect of Rapid Thermal Annealing (RTA) on Thermal Properties of Carbon Nanofibre (CNF) Arrays
,”
J. Phys. D
,
39
, pp.
4878
4885
.
10.
Suhir
,
E.
, 2007, “
Apparatus and Test Device for the Application and Measurement of Prescribed, Predicted and Controlled Contact Pressure on Wires
,” U.S. Patent No. 7,279,916.
11.
Ganesan
,
Y.
and
Lou
,
J.
, 2009, “
The Mechanical Characterization of CNT-Reinforced Polymer-Matrix Nanocomposites: An Unfolding Story of Interface
,”
J. Min. Metals Mater. Soc.
,
61
, pp.
829
837
.
12.
Aayan
,
P. M.
,
Schadler
,
L. S.
,
Giannasis
,
C.
, and
Rubio
,
A.
, 2000, “
Single-Walled Carbon Nanotube-Polymer Composites: Strength and Weakness
,”
Adv. Mater.
,
12
, pp.
750
753
.
13.
Timoshenko
,
S. P.
, 1961, “
Theory of Elastic Stability
,” 2nd ed.,
McGraw-Hill
,
New York
.
14.
Suhir
,
E.
1991, “
Structural Analysis in Microelectronic and Fiber Optic Systems
,”
Basic Principles of Engineering Elasticity and Fundamentals of Structural Analysis
,” Vol.
1
,
Van Nostrand Reinhold
,
New York
.
15.
Vangheluve
,
D. C. L.
, 1984, “
Exact Calculations of a Spring Constant in the Buckling of Optical Fibers
,”
Appl. Opt.
,
23
, pp.
2045
2046
.
16.
Suhir
,
E.
, 2007, “
Elastic Stability of a Dual-Coated Optical Fiber of Finite Length
,”
J. Appl. Phys.
,
102
, pp.
27
31
.
17.
Liang
,
L. Y.
,
Huang
,
Y.
,
Liang
,
H.
,
Ravichandran
,
G.
,
Gao
,
H.
,
Hwan
,
K.
, and
Diu
,
B.
, 2006, “
A Cohesive Law for Carbon Nanotube/Polymer Interfaces Based on the van der Waals Force
,”
J. Mechan. Phys. Solids
,
54
, pp.
2436
2452
.
18.
Frankland
,
S. J. V.
,
Calgar
,
A.
,
Brenner
,
B. W.
, and
Gickel
,
M.
, 2002, “
Molecular Simulation of the Influence of Chemical Cross-Links on the Shear Strength Carbon Nanotube-Polymer Interfaces
,”
J. Phys. Chem. Ser. B
,
106
, pp.
3046
3048
.
19.
Tan
,
H.
,
Wu
,
J.
,
Huang
,
Y.
,
Hwang
,
K. C.
, 2007, “
The Effect of van der Waals – based Interface Cohesive Law on Carbon Nanotube Reinforced Composite Materials
,”
Compos. Sci. Techn.
,
67
, pp.
2941
2946
.
20.
Li
,
R.
and
Kardomateas
,
G. A.
, 2007, “
Thermal Buckling of Multi-Walled Carbon Nanotubes by Elasticity
,”
J. Appl. Mechan.
,
74
, pp.
75
92
.
21.
Brazier
,
L. G.
, 1926, “
On the Flexure of Thin Cylindrical Shells and Other Thin Sections
,” Late of the Royal Aircraft Establishment. Reports and memoranda, No. 1081,
M49
.
22.
Silvestre
,
N.
, 2008, “
Length Dependence of Critical Measures in Single-Walled Carbon Nano-Tubes
,”
Int. J. Solids Struct.
,
45
, pp.
4902
4920
.
23.
Eringen
,
A. C.
, 1972, “
Linear Theory of Nonlocal Elasticity and Dispersion of Plane Waves
,”
Int. J. Eng. Sci.
,
10
(
5
), pp.
425
435
.
24.
Eringen
,
A. C.
, 2002,
Nonlocal Continuum Field Theories
,
Springer
,
New York
.
25.
Peddieson
,
J.
,
Buchanan
,
G. R.
and
McNitt
,
R. P.
, 2003, “
Application of Nonlocal Continuum Models to Nanotechnology
,”
Int. J. Eng. Sci.
,
41
(
3–5
), pp.
305
312
.
26.
Sudak
,
L. J.
, 2003, “
Column Buckling of Multiwalled Carbon Nanotubes Using Nonlocal Continuum Mechanics
,”
J. Appl. Phys.
,
94
(
11
), pp.
7281
7287
.
27.
Suhir
,
E.
, 1988, “
Spring Constant In the Buckling of Dual-Coated Optical Fibers
,”
IEEE/OSA J. Lightwave Techn.
,
6
(
7
), pp.
1240
1244
28.
Suhir
,
E.
, 1988. “
Effect of Initial Curvature on Low Temperature Microbending in Optical Fibers
,”
IEEE/OSA J. Lightwave Techn.
,
6
(
8
), pp.
1321
1327
.
You do not currently have access to this content.