In this work, Green’s functions for unbounded elastic domain in a functionally graded material with a quadratic variation of elastic moduli and constant Poisson’s ratio of 0.25 are derived for both two-dimensional (2D) and three-dimensional (3D) cases. The displacement fields caused by a point force are derived using the logarithmic potential and the Kelvin solution for 2D and 3D cases, respectively. For a circular (2D) or spherical (3D) bounded domain, analytical solutions are provided by superposing the above solutions and corresponding elastic general solutions. This closed form solution is valuable for elastic analysis with material stiffness variations caused by temperature, moisture, aging effect, or material composition, and it can be used to perform early stage verification of more complex models of functionally graded materials. Comparison of theoretical solution and finite element method results demonstrates the application and accuracy of this solution.

1.
Dave
,
E. V.
,
Paulino
,
G. H.
, and
Buttlar
,
W. G.
, 2009, “
Asphalt Pavement Aging and Temperature Dependent Properties Through a Functionally Graded Viscoelastic Model, Part-I: Development, Implementation and Verification
,”
Mater. Sci. Forum
0255-5476,
631–632
, pp.
47
52
.
2.
Dave
,
E. V.
,
Buttlar
,
W. G.
, and
Paulino
,
G. H.
, 2009, “
Asphalt Pavement Aging and Temperature Dependent Properties Through a Functionally Graded Viscoelastic Model, Part-II: Applications
,”
Mater. Sci. Forum
0255-5476,
631–632
, pp.
53
58
.
3.
Gubler
,
R.
,
Partl
,
M. N.
,
Canestrari
,
F.
, and
Grilli
,
A.
, 2005, “
Influence of Water and Temperature on Mechanical Properties of Selected Asphalt Pavements
,”
Mater. Struct.
1359-5997,
38
(
279
), pp.
523
532
.
4.
Yin
,
H. M.
,
Paulino
,
G. H.
,
Buttlar
,
W. G.
, and
Sun
,
L. Z.
, 2008, “
Heat Flux Field for One Spherical Inhomogeneity Embedded in a Functionally Graded Material Matrix
,”
Int. J. Heat Mass Transfer
0017-9310,
51
(
11–12
), pp.
3018
3024
.
5.
Yin
,
H. M.
,
Sun
,
L. Z.
, and
Paulino
,
G. H.
, 2004, “
Micromechanics-Based Elastic Model for Functionally Graded Materials With Particle Interactions
,”
Acta Mater.
1359-6454,
52
(
12
), pp.
3535
3543
.
6.
Erdogan
,
F.
, 1995, “
Fracture Mechanics of Functionally Graded Materials
,”
Composites Eng.
0961-9526
5
, pp.
753
770
.
7.
Santare
,
M. H.
, and
Lambros
,
J.
, 2000, “
Use of Graded Finite Elements to Model the Behavior of Nonhomogeneous Materials
,”
Trans. ASME, J. Appl. Mech.
0021-8936,
67
(
4
), pp.
819
822
.
8.
Kim
,
J. H.
, and
Paulino
,
G. H.
, 2002, “
Finite Element Evaluation of Mixed Mode Stress Intensity Factors in Functionally Graded Materials
,”
Int. J. Numer. Methods Eng.
0029-5981,
53
(
8
), pp.
1903
1935
.
9.
Kim
,
J. H.
, and
Paulino
,
G. H.
, 2002, “
Mixed-Mode Fracture of Orthotropic Functionally Graded Materials Using Finite Elements and the Modified Crack Closure Method
,”
Eng. Fract. Mech.
0013-7944,
69
(
14–16
), pp.
1557
1586
.
10.
Anlas
,
G.
,
Santare
,
M. H.
, and
Lambros
,
J.
, 2000, “
Numerical Calculation of Stress Intensity Factors in Functionally Graded Materials
,”
Int. J. Fract.
0376-9429,
104
(
2
), pp.
131
143
.
11.
Naghdabadi
,
R.
, and
Kordkheili
,
S. A. H.
, 2005, “
A Finite Element Formulation for Analysis of Functionally Graded Plates and Shells
,”
Arch. Appl. Mech.
0939-1533,
74
(
5–6
), pp.
375
386
.
12.
Yin
,
H. M.
,
Paulino
,
G. H.
,
Buttlar
,
W. G.
, and
Sun
,
L. Z.
, 2005, “
Effective Thermal Conductivity of Two-Phase Functionally Graded Particulate Composites
,”
J. Appl. Phys.
0021-8979,
98
(
6
), p.
063704
.
13.
Sutradhar
,
A.
, and
Paulino
,
G. H.
, 2004, “
The Simple Boundary Element Method for Transient Heat Conduction in Functionally Graded Materials
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
193
(
42–44
), pp.
4511
4539
.
14.
Sutradhar
,
A.
,
Paulino
,
G. H.
, and
Gray
,
L. J.
, 2003, “
Erratum to “Transient Heat Conduction in Homogeneous and Non-Homogeneous Materials by the Laplace Transform Galerkin Boundary Element Method” [Engineering Analysis With Boundary Elements 26 (2002) 119–132]
,”
Eng. Anal. Bound. Elem.
,
27
(
6
), p.
639
.
15.
Berger
,
J. R.
,
Martin
,
P. A.
,
Mantic
,
V.
, and
Gray
,
L. J.
, 2005, “
Fundamental Solutions for Steady-State Heat Transfer in an Exponentially Graded Anisotropic Material
,”
Z. Angew. Math. Phys.
0044-2275,
56
(
2
), pp.
293
303
.
16.
Paulino
,
G. H.
,
Yin
,
H. M.
, and
Sun
,
L. Z.
, 2006, “
Micromechanics-Based Interfacial Debonding Model for Damage of Functionally Graded Materials With Particle Interactions
,”
Int. J. Damage Mech.
1056-7895,
15
(
3
), pp.
267
288
.
17.
Yin
,
H. M.
,
Paulino
,
G. H.
,
Buttlar
,
W. G.
, and
Sun
,
L. Z.
, 2007, “
Micromechanics-Based Thermoelastic Model for Functionally Graded Particulate Materials With Particle Interactions
,”
J. Mech. Phys. Solids
0022-5096,
55
(
1
), pp.
132
160
.
18.
Gray
,
L. J.
,
Kaplan
,
T.
,
Richardson
,
J. D.
, and
Paulino
,
G. H.
, 2003, “
Green’s Functions and Boundary Integral Analysis for Exponentially Graded Materials: Heat Conduction
,”
Trans. ASME, J. Appl. Mech.
0021-8936,
70
(
4
), pp.
543
549
.
19.
Mura
,
T.
, 1987,
Micromechanics of Defects in Solids, Mechanics of Elastic and Inelastic Solids
,
Kluwer Academic
,
Dordrecht
.
20.
Fabrikant
,
V. I.
, 1989,
Applications of Potential Theory in Mechanics: A Selection of New Results
,
Kluwer Academic
,
Boston, MA
.
21.
Yin
,
H. M.
,
Sun
,
L. Z.
, and
Chen
,
J. S.
, 2006, “
Magneto-Elastic Modeling of Composites Containing Chain-Structured Magnetostrictive Particles
,”
J. Mech. Phys. Solids
0022-5096,
54
(
5
), pp.
975
1003
.
22.
Gibson
,
R. E.
, and
Kalsi
,
G. S.
, 1974, “
Surface Settlement of a Linearly Inhomogeneous Cross-Anisotropic Elastic Half-Space
,”
Z. Angew. Math. Phys.
0044-2275,
25
(
6
), pp.
843
847
.
23.
Vrettos
,
C.
, 1990, “
Inplane Vibrations of Soil Deposits With Variable Shear Modulus. 1. Surface-Waves
,”
Int. J. Numer. Analyt. Meth. Geomech.
0363-9061,
14
(
3
), pp.
209
222
.
24.
Vrettos
,
C.
, 1990, “
Inplane Vibrations of Soil Deposits With Variable Shear Modulus. 2. Line Load
,”
Int. J. Numer. Analyt. Meth. Geomech.
0363-9061,
14
(
9
), pp.
649
662
.
25.
Spencer
,
A. J. M.
, and
Selvadurai
,
A. P. S.
, 1998, “
Some Generalized Anti-Plane Strain Problems for an Inhomogeneous Elastic Halfspace
,”
J. Eng. Math.
0022-0833,
34
(
4
), pp.
403
416
.
26.
Clements
,
D. L.
, and
Ang
,
W. T.
, 2009, “
On Some Contact Problems for Inhomogeneous Anisotropic Elastic Materials
,”
Int. J. Eng. Sci.
0020-7225,
47
(
11–12
), pp.
1149
1162
.
27.
Martin
,
P. A.
,
Richardson
,
J. D.
,
Gray
,
L. J.
, and
Berger
,
J. R.
, 2002, “
On Green’s Function for a Three-Dimensional Exponentially Graded Elastic Solid
,”
Proc. R. Soc. London, Ser. A
0950-1207,
458
(
2024
), pp.
1931
1947
.
28.
Chan
,
Y. S.
,
Gray
,
L. J.
,
Kaplan
,
T.
, and
Paulino
,
G. H.
, 2004, “
Green’s Function for a Two-Dimensional Exponentially Graded Elastic Medium
,”
Proc. R. Soc. London, Ser. A
0950-1207,
460
(
2046
), pp.
1689
1706
.
29.
Manolis
,
G. D.
, and
Shaw
,
R. P.
, 1996, “
Green’s Function for the Vector Wave Equation in a Mildly Heterogeneous Continuum
,”
Wave Motion
0165-2125,
24
(
1
), pp.
59
83
.
You do not currently have access to this content.