This study extends a recently developed cellular automata (CA) modeling approach (Leamy, 2008, “Application of Cellular Automata Modeling to Seismic Elastodynamics,” Int. J. Solids Struct., 45(17), pp. 4835–4849) to arbitrary two-dimensional geometries via the development of a rule set governing triangular automata (cells). As in the previous rectangular CA method, each cell represents a state machine, which updates in a stepped manner using a local “bottom-up” rule set and state input from neighboring cells. Notably, the approach avoids the need to develop and solve partial differential equations and the complexity therein. The elastodynamic responses of several general geometries and loading cases (interior, Neumann, and Dirichlet) are computed with the method and then compared with results generated using the earlier rectangular CA and finite element approaches. Favorable results are reported in all cases with numerical experiments indicating that the extended CA method avoids, importantly, spurious oscillations at the front of sharp wave fronts.

1.
Schröder
,
C. T.
, 2001, “
On the Interaction of Elastic Waves With Buried Land Mines: An Investigation Using the Finite-Difference Time-Domain Method
,” Ph.D. thesis, Georgia Institute of Technology, Atlanta, GA.
2.
Leamy
,
M. J.
, 2008, “
Application of Cellular Automata Modeling to Seismic Elastodynamics
,”
Int. J. Solids Struct.
0020-7683,
45
(
17
), pp.
4835
4849
.
3.
Pryor
,
R. W.
, 2009,
Multiphysics Modeling Using COMSOL: A First Principles Approach
,
Jones and Bartlett
,
Boston
.
4.
von Neumann
,
J.
, 1966,
Theory of Self-Reproducing Automata
,
University of Illinois Press
,
Urbana, IL
.
5.
Gardner
,
M.
, 1970, “
Fantastic Combinations of John Conway’s New Solitaire Game Life
,”
Sci. Am.
0036-8733,
223
(
4
), pp.
120
123
.
6.
Raabe
,
D.
, 2002, “
Cellular Automata in Materials Science With Particular Reference to Recrystallization Simulation
,”
Annu. Rev. Mater. Res.
1531-7331,
32
, pp.
53
76
.
7.
dos Santos
,
R. M. Z.
, and
Coutinho
,
S.
, 2001, “
Dynamics of HIV Infection: A Cellular Automata Approach
,”
Phys. Rev. Lett.
0031-9007,
87
(
16
), p.
168102
.
8.
Green
,
D. G.
,
Tridgell
,
A.
, and
Gill
,
A. M.
, 1990, “
Interactive Simulation of Bushfires in Heterogeneous Fuels
,”
Math. Comput. Modell.
0895-7177,
13
(
12
), pp.
57
66
.
9.
Schreckenberg
,
M.
,
Schadschneider
,
A.
,
Nagel
,
K.
, and
Ito
,
N.
, 1995, “
Discrete Stochastic Models for Traffic Flow
,”
Phys. Rev. E
1063-651X,
51
(
4
), pp.
2939
2949
.
10.
Honma
,
T.
, and
Tosaka
,
N.
, 2003, “
Autonomous Decentralized Finite Element Method and Its Applications
,”
Int. J. Numer. Methods Eng.
0029-5981,
57
(
6
), pp.
853
874
.
11.
Ryoo
,
J.
,
Hajela
,
P.
,
Suhr
,
J.
, and
Koratkar
,
N.
, 2007, “
Estimation of Young’s Modulus of Single-Walled Carbon Nanotube Using Cellular Automata
,”
Adv. Eng. Software
0965-9978,
38
(
8–9
), pp.
531
537
.
12.
Simons
,
N. R. S.
,
Bridges
,
G. E.
,
Podaima
,
B. W.
, and
Sebak
,
A. R.
, 1994, “
Cellular Automata as an Environment for Simulating Electromagnetic Phenomena
,”
IEEE Microw. Guid. Wave Lett.
1051-8207,
4
(
7
), pp.
247
249
.
13.
Lan
,
Y. J.
,
Xiao
,
N. M.
,
Li
,
D. Z.
, and
Li
,
Y. Y.
, 2005, “
Mesoscale Simulation of Deformed Austenite Decomposition Into Ferrite by Coupling a Cellular Automaton Method With a Crystal Plasticity Finite Element Model
,”
Acta Mater.
1359-6454,
53
(
4
), pp.
991
1003
.
14.
Raghavan
,
S.
, and
Sahay
,
S. S.
, 2007, “
Modeling the Grain Growth Kinetics by Cellular Automaton
,”
Mater. Sci. Eng., A
0921-5093,
445-446
, pp.
203
209
.
15.
Yang
,
B. J.
,
Chuzhoy
,
L.
, and
Johnson
,
M. L.
, 2007, “
Modeling of Reaustenitization of Hypoeutectoid Steels With Cellular Automaton Method
,”
Comput. Mater. Sci.
0927-0256,
41
(
2
), pp.
186
194
.
16.
Bernsdorf
,
J.
,
Durst
,
F.
, and
Schafer
,
M.
, 1999, “
Comparison of Cellular Automata and Finite Volume Techniques for Simulation of Incompressible Flows in Complex Geometries
,”
Int. J. Numer. Methods Fluids
0271-2091,
29
(
3
), pp.
251
264
.
17.
Krafczyk
,
M.
,
Tölke
,
J.
,
Rank
,
E.
, and
Schulz
,
M.
, 2001, “
Two-Dimensional Simulation of Fluid–Structure Interaction Using Lattice-Boltzmann Methods
,”
Comput. Struct.
0045-7949,
79
(
22–25
), pp.
2031
2037
.
18.
Das
,
S.
,
Abbod
,
M. F.
,
Zhu
,
Q.
,
Palmiere
,
E. J.
,
Howard
,
I. C.
, and
Linkens
,
D. A.
, 2007, “
A Combined Neuro Fuzzy-Cellular Automata Based Material Model for Finite Element Simulation of Plane Strain Compression
,”
Comput. Mater. Sci.
0927-0256,
40
(
3
), pp.
366
375
.
19.
Rothman
,
D. H.
, 1987, “
Modeling Seismic P-Waves With Cellular Automata
,”
Geophys. Res. Lett.
0094-8276,
14
(
1
), pp.
17
20
.
20.
Hajela
,
P.
, and
Kim
,
B.
, 2001, “
On the Use of Energy Minimization for CA Based Analysis in Elasticity
,”
Struct. Multidiscip. Optim.
1615-147X,
23
(
1
), pp.
24
33
.
21.
Slotta
,
D. J.
,
Tatting
,
B.
,
Watson
,
L. T.
,
Gürdal
,
Z.
, and
Missoum
,
S.
, 2002, “
Convergence Analysis for Cellular Automata Applied to Truss Design
,”
Eng. Comput.
0177-0667,
19
(
8
), pp.
953
969
.
22.
Eugenio
,
A.
, and
Rasetti
,
M.
, 1996, “
A Cellular Automaton for Elasticity Equations
,”
Int. J. Mod. Phys. B
0217-9792,
10
(
2
), pp.
203
218
.
23.
Abdellaoui
,
M.
,
El Jai
,
A.
, and
Shillor
,
M.
, 2002, “
Cellular Automata Model for a Contact Problem
,”
Math. Comput. Modell.
0895-7177,
36
(
9–10
), pp.
1099
1114
.
24.
Zhong
,
Y.
,
Shirinzadeh
,
B.
,
Alici
,
G.
, and
Smith
,
J.
, 2006, “
A Cellular Neural Network Methodology for Deformable Object Simulation
,”
IEEE Trans. Inf. Technol. Biomed.
1089-7771,
10
(
4
), pp.
749
762
.
25.
Psakhie
,
S. G.
,
Horie
,
Y.
,
Ostermeyer
,
G. P.
,
Korostelev
,
S. Y.
,
Smolin
,
A. Y.
,
Shilko
,
E. V.
,
Dmitriev
,
A. I.
,
Blatnik
,
S.
,
Špegel
,
M.
, and
Zavšk
,
S.
, 2001, “
Movable Cellular Automata Method for Simulating Materials With Mesostructure
,”
Theor. Appl. Fract. Mech.
0167-8442,
37
(
1–3
), pp.
311
334
.
26.
Rappaz
,
M.
, and
Gandin
,
C. A.
, 1993, “
Probabilistic Modeling of Microstructure Formation in Solidification Processes
,”
Acta Metall. Mater.
0956-7151,
41
(
2
), pp.
345
360
.
27.
Fabero
,
J. C.
,
Bautista
,
A.
, and
Casasus
,
L.
, 2001, “
An Explicit Finite Differences Scheme Over Hexagonal Tessellation
,”
Appl. Math. Lett.
0893-9659,
14
(
5
), pp.
593
598
.
28.
Psakhie
,
S. G.
,
Smolin
,
A. Y.
,
Stefanov
,
Y. P.
,
Makarov
,
P. V.
, and
Chertov
,
M. A.
, 2004, “
Modeling the Behavior of Complex Media by Jointly Using Discrete and Continuum Approaches
,”
Tech. Phys. Lett.
1063-7850,
30
(
9
), pp.
712
714
.
29.
Hirsekorn
,
M.
,
Delsanto
,
P. P.
,
Leung
,
A. C.
, and
Matic
,
P.
, 2006, “
Elastic Wave Propagation in Locally Resonant Sonic Material: Comparison Between Local Interaction Simulation Approach and Modal Analysis
,”
J. Appl. Phys.
0021-8979,
99
(
12
), p.
124912
.
30.
Kwon
,
Y. W.
, and
Hosoglu
,
S.
, 2008, “
Application of Lattice Boltzmann Method, Finite Element Method, and Cellular Automata and Their Coupling to Wave Propagation Problems
,”
Comput. Struct.
0045-7949,
86
(
7–8
), pp.
663
670
.
31.
Zheng
,
C.
,
Xiao
,
N.
,
Li
,
D.
, and
Li
,
Y.
, 2008, “
Microstructure Prediction of the Austenite Recrystallization During Multi-Pass Steel Strip Hot Rolling: A Cellular Automaton Modeling
,”
Comput. Mater. Sci.
0927-0256,
44
(
2
), pp.
507
514
.
32.
Delsanto
,
P. P.
,
Schechter
,
R. S.
,
Chaskelis
,
H. H.
,
Mignogna
,
R. B.
, and
Kline
,
R.
, 1994, “
Connection Machine Simulation of Ultrasonic Wave Propagation in Materials. II: The Two-Dimensional Case
,”
Wave Motion
0165-2125,
20
, pp.
295
314
.
33.
Hopman
,
R.
, 2008, “
Arbitrary Geometry Cellular Automata for Elastodynamics
,” Master's thesis, Georgia Institute of Technology, Atlanta, GA.
34.
Fujimoto
,
R. M.
, 1990, “
Parallel Discrete Event Simulation
,”
Commun. ACM
0001-0782,
33
(
10
), pp.
30
53
.
35.
Idesman
,
A.
,
Samajder
,
H.
,
Aulisa
,
E.
, and
Seshaiyer
,
P.
, 2009, “
Benchmark Problems for Wave Propagation in Elastic Materials
,”
Comput. Mech.
0178-7675,
43
(
6
), pp.
797
814
.
You do not currently have access to this content.