Interaction between a solid copper jet and an electric current pulse is a complex process that has been experimentally studied by letting a jet created by a shaped charge device pass through an electrode configuration consisting of two aluminum plates with a separation distance of 150 mm. When the jet bridged the electrodes, which are connected to a charged pulsed power supply, current pulses with amplitude up to 250 kA were passed through the jet. By using flash X-ray diagnostics, the disruption of the electrified jets could be studied. In this paper, the disruption of the electrified jets is discussed and compared with disruption phenomena observed in electrically exploded metal rods in a static setup. Necks are naturally formed along a stretching jet, and in the experiments with current interaction these necks explode electrically. In the static experiments, the metal rods have small notches distributed along the rod to resemble the necks of the jet. When two neighboring necks or notches explode, the shock of the explosion compresses the intermediate jet or rod segment axially and the material is forced out radially. The disruption phenomena in the jet and rod experiments are similar with rapid expansion of the metal at explosion and at comparable velocities.

1.
Chase
,
W. G.
, and
Moore
,
H. K.
, 1959, “
Exploding Wires
,”
Proceedings of the Conference on the Exploding Wire Phenomenon
,
Plenum
,
New York
.
2.
Appelgren
,
P.
,
Skoglund
,
M.
,
Lundberg
,
P.
,
Westerling
,
L.
,
Larsson
,
A.
, and
Hurtig
,
T.
, 2010, “
Experimental Study of Electromagnetic Effects on Solid Copper Jets
,”
ASME J. Appl. Mech.
0021-8936,
77
(
1
), p.
011010
.
3.
Appelgren
,
P.
,
Carlsson
,
T. E.
,
Helte
,
A.
,
Hurtig
,
T.
,
Larsson
,
A.
,
Lundberg
,
P.
,
Skoglund
,
M.
, and
Westerling
,
L.
, 2011, “
Interaction Between Solid Copper Jets and Powerful Electrical Current Pulses
,”
ASME J. Appl. Mech.
0021-8936,
78
(
2
), p.
021006
.
4.
Appelgren
,
P.
,
Larsson
,
A.
,
Lundberg
,
P.
,
Skoglund
,
M.
, and
Westerling
,
L.
, 2009, “
Studies of Electrically-Exploded Conductors for Electric Armour Applications
,”
Acta Phys. Pol. A
0587-4246,
115
(
6
), pp.
1072
1074
.
5.
Taylor
,
M. J.
, 2005, “
Interruption of the Explosion of Plasma Initiator Wires
,”
Proceedings of the 12th Symposium on Electromagnetic Launch Technology
, May 25–28, pp.
312
317
.
6.
Senior
,
P.
,
Smith
,
I. R.
,
Appelgren
,
P.
,
Elfsberg
,
M.
,
Lundberg
,
P.
, and
Skoglund
,
M.
, 2006, “
A 400kJ Mobile Pulsed Power System With Variable Pulse Forming
,”
Proceedings of Megagauss XI
, London, UK, pp.
257
261
.
7.
Mayseless
,
M.
,
Gruss
,
E.
,
Me-Bar
,
Y.
,
Surujon
,
Z.
, and
Rosenberg
,
A.
, 2004, “
Electrical Explosion of Undulated Wires
,”
Proceedings of the 21st International Symposium on Ballistics
, Adelaide, South Australia, Apr. 19–23, pp.
324
330
.
8.
Me-Bar
,
Y.
, and
Harel
,
R.
, 1996, “
Electrical Explosions of Segmented Wires
,”
J. Appl. Phys.
0021-8979,
79
(
4
), pp.
1864
1868
.
9.
Hollandsworth
,
C. E.
,
Powell
,
J. D.
,
Keele
,
J.
, and
Hummer
,
C. R.
, 1998, “
Electrical Conduction in Exploded Segmented Wires
,”
J. Appl. Phys.
0021-8979,
84
(
9
), pp.
4992
5000
.
10.
Powell
,
J. D.
,
Thornhill
,
L. D.
,
Batteh
,
J. H.
, and
Verdon
,
M.
, 1999, “
Current Distribution and Resistance Characteristics in Plasma Injectors for Electrothermal-Chemical Launch
,”
IEEE Trans. Magn.
0018-9464,
35
(
1
), pp.
218
223
.
11.
Shvetsov
,
G. A.
, 1999, “
Disruption of Shaped Charge Jets Due to Axial Current
,”
18th International Symposium on Ballistics
, San Antonio, Nov. 15–19.
12.
Robertson
,
I.
,
Clegg
,
R.
,
Burton
,
A.
,
Hayhurst
,
C.
,
Riley
,
C.
,
Simkin
,
J.
,
Moor
,
E.
,
Ratcliff
,
P.
, and
Cliffe
,
R.
, 2004, “
Insights From Numerical Modeling of Electric Armor Using Hydrocode and Electromagnetic Software
,”
Proceedings of the 12th Electromagnetic Launch Technology Symposium
, Snowbird, UT, May 25–28.
13.
Spielman
,
R. B.
,
Deeney
,
C.
,
Chandler
,
G. A.
,
Douglas
,
M. R.
,
Fehl
,
D. L.
,
Matzen
,
M. K.
,
McDaniel
,
D. H.
,
Nash
,
T. J.
,
Porter
,
J. L.
,
Sanford
,
T. W. L.
,
Seamen
,
J. F.
,
Stygar
,
W. A.
,
Struve
,
K. W.
,
Breeze
,
S. P.
,
McGurn
,
J. S.
,
Torres
,
J. A.
,
Zagar
,
D. M.
,
Gilliland
,
T. L.
,
Jobe
,
D. O.
,
McKenney
,
J. L.
,
Mock
,
R. C.
,
Vargas
,
M.
, and
Wagoner
,
T.
, 1998, “
Tungsten Wire-Array, Z-Pinch Experiments at 200 TW and 2 MJ
,”
Phys. Plasmas
1070-664X,
5
(
5
), pp.
2105
2111
.
14.
Chandler
,
K. M.
,
Hammer
,
D. A.
,
Sinars
,
D. B.
,
Pikuz
,
S. A.
, and
Shelkovenko
,
T. A.
, 2002, “
The Relationship Between Exploding Wire Expansion Rates and Wire Material Properties Near the Boiling Temperature
,”
IEEE Trans. Plasma Sci.
0093-3813,
30
(
2
), pp.
577
587
.
15.
Taylor
,
M. J.
, and
Dunnet
,
J.
, 2003, “
A Description of the Wire Explosion Process for ETC Plasma Generators
,”
IEEE Trans. Magn.
0018-9464,
39
(
1
), pp.
269
274
.
16.
Taylor
,
M. J.
, 2002, “
Formation of Plasma Around Wire Fragments Created by Electrically Exploded Copper Wire
,”
J. Phys. D
0022-3727,
35
, pp.
700
709
.
17.
Taylor
,
M. J.
, 2002, “
Plasma Propellant Interactions in an Electrothermal-Chemical Gun
,” Ph.D. thesis, Cranfield University, Cranfield, Bedfordshire, UK.
You do not currently have access to this content.