The path-dependence of the J-integral is investigated numerically via the finite-element method, for a range of loadings, Poisson’s ratios, and hardening exponents within the context of J2-flow plasticity. Small-scale yielding assumptions are employed using Dirichlet-to-Neumann map boundary conditions on a circular boundary that encloses the plastic zone. This construct allows for a dense finite-element mesh within the plastic zone and accurate far-field boundary conditions. Details of the crack tip field that have been computed previously by others, including the existence of an elastic sector in mode I loading, are confirmed. The somewhat unexpected result is that J for a contour approaching zero radius around the crack tip is approximately 18% lower than the far-field value for mode I loading for Poisson’s ratios characteristic of metals. In contrast, practically no path-dependence is found for mode II. The applications of T- or S-stress, whether applied proportionally with the K-field or prior to K, have only a modest effect on the path-dependence.

1.
Eshelby
,
J. D.
, 1956, “
The Continuum Theory of Lattice Defects
,”
Solid State Physics
,
F.
Seitz
and
D.
Turnbull
, eds.,
Academic
,
New York
, Vol.
III
.
2.
Eshelby
,
J. D.
, 1970, “
Energy Relations and the Energy Momentum Tensor in Continuum Mechanics
,”
Inelastic Behavior of Solids
,
M. F.
Kanninen
W. F.
Adler
,
A. R.
Rosenfield
, and
R. I.
Jaffe
, eds.,
McGraw-Hill
,
New York
.
3.
Rice
,
J. R.
, 1968, “
A Path Independent Integral and Approximate Analysis of Strain Concentration by Notches and Cracks
,”
ASME J. Appl. Mech.
0021-8936,
35
, pp.
379
386
.
4.
Rice
,
J. R.
, 1968, “
Mathematical Analysis in the Mechanics of Fracture
,”
Fracture: An Advanced Treatise
, Vol.
II
,
H.
Liebowitz
, ed.,
Academic
,
New York
, pp.
191
311
.
5.
Rice
,
J. R.
, and
Rosengren
,
G. F.
, 1968, “
Plane Strain Deformation Near a Crack Tip in a Power-Law Hardening Material
,”
J. Mech. Phys. Solids
0022-5096,
16
, pp.
1
12
.
6.
Hutchinson
,
J. W.
, 1968, “
Singular Behaviour at the End of a Tensile Crack in a Hardening Material
,”
J. Mech. Phys. Solids
0022-5096,
16
, pp.
13
31
.
7.
Shih
,
C. F.
, 1974, “
Small Scale Yielding Analysis of Mixed Mode Plane Strain Crack Problems
,” ASTM STP 560, pp.
187
210
.
8.
Shih
,
C. F.
, 1981, “
Relationships Between the J-integral and the Crack Opening Displacement for Stationary and Extending Cracks
,”
J. Mech. Phys. Solids
0022-5096,
29
, pp.
305
326
.
9.
Rice
,
J. R.
, 1967, “
Stresses Due to a Sharp Notch in a Work-Hardening Elastic-Plastic Materials Loaded by Longitudinal Shear
,”
ASME J. Appl. Mech.
0021-8936,
34
, pp.
287
298
.
10.
McMeeking
,
R. M.
, 1977, “
Finite Deformation Analysis of Crack-Tip Opening in Elastic-Plastic Materials and Implications for Fracture
,”
J. Mech. Phys. Solids
0022-5096,
25
, pp.
357
381
.
11.
Rice
,
J. R.
, and
Sorenson
,
E. P.
, 1978, “
Continuing Crack-Tip Deformation and Fracture for Plane-Strain Crack Growth in Elastic-Plastic Solids
,”
J. Mech. Phys. Solids
0022-5096,
26
, pp.
163
186
.
12.
Drugan
,
W. J.
,
Rice
,
J. R.
, and
Sham
,
T. L.
, 1982, “
Asymptotic Analysis of Growing Plane Strain Tensile Cracks in Elastic-Ideally Plastic Solids
,”
J. Mech. Phys. Solids
0022-5096,
30
, pp.
447
473
.
13.
Rice
,
J. R.
, 1974, “
Limitations to Small-Scale Yielding Approximation for Crack Tip Plasticity
,”
J. Mech. Phys. Solids
0022-5096,
22
, pp.
17
26
.
14.
Barsoum
,
R. S.
, 1977, “
Triangular Quarter-Point Elements as Elastic and Perfectly-Plastic Crack Tip Elements
,”
Int. J. Numer. Methods Eng.
0029-5981,
11
, pp.
85
98
.
15.
Manu
,
C.
, 1985, “
Complete Quadratic Isoparametric Finite-Elements in Fracture-Mechanics Analysis
,”
Int. J. Numer. Methods Eng.
0029-5981,
21
, pp.
1547
1553
.
16.
Stern
,
M.
, 1979, “
Families of Consistent Conforming Elements With Singular Derivative Fields
,”
Int. J. Numer. Methods Eng.
0029-5981,
14
, pp.
409
421
.
17.
Carka
,
D.
,
Mear
,
M. E.
, and
Landis
,
C. M.
, “
The Dirichlet-to-Neumann Map for Two-Dimensional Crack Problems
,”
Comput. Methods Appl. Mech. Eng.
0045-7825, submitted.
18.
Givoli
,
D.
, and
Keller
,
J. B.
, 1989, “
A Finite Element Method for Large Domains
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
76
, pp.
41
66
.
19.
Givoli
,
D.
, and
Rivkin
,
L.
, 1993, “
The DtN Finite-Element Method for Elastic Domains With Cracks and Re-Entrant Corners
,”
Comput. Struct.
0045-7949,
49
, pp.
633
642
.
20.
Hilton
,
P. D.
, and
Hutchinson
,
J. W.
, 1971, “
Plastic Intensity Factors for Cracked Plates
,”
Eng. Fract. Mech.
0013-7944,
3
, pp.
435
451
.
21.
Landis
,
C. M.
, 2002, “
A New Finite-Element Formulation for Electromechanical Boundary Value Problems
,”
Int. J. Numer. Methods Eng.
0029-5981,
55
, pp.
613
628
.
22.
Li
,
F. Z.
,
Shih
,
C. F.
, and
Needleman
,
A.
, 1985, “
A Comparison of Methods for Calculating Energy Release Rates
,”
Eng. Fract. Mech.
0013-7944,
21
, pp.
405
421
.
23.
Rice
,
J. R.
, and
Tracey
,
D. M.
, 1973, “
Computational Fracture Mechanics
,”
Numerical and Computer Methods in Structural Mechanics
,
Academic
,
New York
, pp.
585
623
.
24.
Du
,
Z. Z.
, and
Hancock
,
J. W.
, 1991, “
The Effect of Non-Singular Stresses on Crack-Tip Constraint
,”
J. Mech. Phys. Solids
0022-5096,
39
, pp.
555
567
.
25.
Levy
,
N.
,
Marcal
,
P. V.
,
Ostergren
,
W. J.
, and
Rice
,
J. R.
, 1971, “
Small Scale Yielding Near a Crack in Plane Strain: A Finite Element Analysis
,”
Int. J. Fract.
0376-9429,
7
, pp.
142
156
.
26.
Hutchinson
,
J. W.
, 1983, “
Fundamentals of the Phenomenological Theory of Non-Linear Fracture Mechanics
,”
ASME J. Appl. Mech.
0021-8936,
50
, pp.
1042
1051
.
27.
Kuang
,
J. H.
, and
Chen
,
Y. C.
, 1996, “
The Values of J-Integral Within the Plastic Zone
,”
Eng. Fract. Mech.
0013-7944,
55
, pp.
869
881
.
You do not currently have access to this content.