The predictions of two numerical models of the deformation of fishing netting are compared. Analytical solutions are found to the differential equations that govern one of these models, and these solutions are used to evaluate the accuracy of both. There is very good agreement between the numerical solutions and the corresponding analytical values. The models are also applied to the deformation of networks where there is an in-plane shear resistance. Although there are no analytical solutions available, the similarity of the numerical solutions gives confidence in both methods.
Issue Section:
Research Papers
1.
Lee
, C. -W.
, Lee
, J. -H.
, Cha
, B. -J.
, Kim
, H. -Y.
, and Lee
, J. -H.
, 2005, “Physical Modeling for Underwater Flexible Systems Dynamic Simulation
,” Ocean Eng.
0029-8018, 32
, pp. 331
–347
.2.
Takagi
, T.
, Shimizu
, T.
, Suzuki
, K.
, Hiraishi
, T.
, and Yamamoto
, K.
, 2004, “Validity and Layout of ‘NaLa’: A Net Configuration and Loading Analysis System
,” Fish. Res.
, 66
, pp. 235
–243
. 0165-78363.
Theret
, F.
, 1993, “Etude de l’´equilibre de surfaces r’eticul’ees plac’ees dans un courant uniforme;application aux chalets
,” Ph.D. thesis, Ecole Centrale de Nantes, Nantes, France.4.
Bessonneau
, J. S.
, and Marichal
, D.
, 1998, “Study of the Dynamics of Submerged Supple Nets (Applications to Trawls)
,” Ocean Eng.
0029-8018, 25
(7
), pp. 563
–583
.5.
Tsukrov
, I.
, Eroshkin
, O.
, Fredriksson
, D. W.
, Swift
, M. R.
, and Celikkol
, B.
, 2003, “Finite Element Modeling of Net Panels Using a Consistent Net Element
,” Ocean Eng.
0029-8018, 30
, pp. 251
–270
.6.
Hu
, F.
, Shiode
, D.
, Wan
, R.
, and Tokai
, T.
, 2006, “Accuracy Evaluation of Numerical Simulation of Mid-Water Trawl Nets
,” Contributions on the Theory of Fishing Gears and Related Marine Systems
, Vol. 4
, C. -W.
Lee
, ed., Pukyong National University Press
, Busan, Korea
.7.
Niedzwiedz
, G.
, and Hopp
, M.
, 1998, “Rope and Net Calculations Applied to Problems in Marine Engineering and Fisheries Research
,” Arch. Fish. Mar. Res.
, 46
, pp. 125
–138
.8.
Le Dret
, H.
, Priour
, D.
, Lewandowski
, R.
, and Chagneau
, F.
, 2004, “Numerical Simulation of a Cod End Net Part 1: Equilibrium in a Uniform Flow
,” J. Elast.
0374-3535, 76
(2
), pp. 139
–162
.9.
Priour
, D.
, 1999, “Calculation of Net Shapes by the Finite Element Method With Triangular Elements
,” Commun. Numer. Methods Eng.
1069-8299, 15
(10
), pp. 755
–763
.10.
Steigmann
, D. J.
, and Pipkin
, A. C.
, 1991, “Equilibrium of Elastic Nets
,” Philos. Trans. R. Soc. London, Ser. A
0962-8428, 335
, pp. 419
–454
.11.
Rivlin
, R. S.
, 1958, “The Deformation of a Membrane Formed by Inextensible Cords
,” Arch. Ration. Mech. Anal.
0003-9527, 2
, pp. 447
–476
.12.
Kuznetsov
, E. N.
, 1986, “Kinetoelastostatics of Axisymmetric Nets
,” ASME J. Appl. Mech.
0021-8936, 53
, pp. 891
–896
.13.
Kuznetsov
, E. N.
, 1991, Underconstrained Structural Systems
, Springer
, New York
.14.
Pipkin
, A. C.
, 1980, “Some Developments in the Theory of Inextensible Networks
,” Q. Appl. Math.
0033-569X, 38
, pp. 343
–355
.15.
O’Neill
, F. G.
, 1997, “Differential Equations Governing the Geometry of a Diamond Mesh Cod-End of a Trawl Net
,” ASME J. Appl. Mech.
0021-8936, 64
(1
), pp. 7
–14
.16.
O’Neill
, F. G.
, 1999, “Axisymmetrical Trawl Cod-Ends Made From Netting of Generalized Mesh Shape
,” IMA J. Appl. Math.
0272-4960, 62
, pp. 245
–262
.17.
Priour
, D.
, 2001, “Introduction of Mesh Resistance to Opening in a Triangular Element for Calculation of Nets by the Finite Element Method
,” Commun. Numer. Methods Eng.
1069-8299, 17
(4
), pp. 229
–237
.18.
O’Neill
, F. G.
, 2002, “The Bending of Twines and Fibres Under Tension
,” J. Text. Inst., Part 1
, 93
, pp. 1
–10
.19.
Kuznetsov
, E. N.
, 1982, “Axisymmetric Static Nets
,” Int. J. Solids Struct.
0020-7683, 18
, pp. 1103
–1112
.20.
Kuznetsov
, E. N.
, 1997, private communication.21.
O’Neill
, F. G.
, 2004, “The Influence of Bending Stiffness on the Deformation of Axisymmetric Networks
,” 23rd International Conference on Offshore Mechanics and Artic Engineering
.22.
O’Neill
, F. G.
, and Herrmann
, B.
, 2007, “PRESEMO—A Predictive Model of Cod-End Selectivity–A Tool for Fisheries Managers
,” ICES J. Mar. Sci.
1054-3139, 64
, pp. 1558
–1568
.23.
Gradshteyn
, I. S.
, and Ryzhik
, I. M.
, 1965, Table of Integrals, Series and Products
, Academic
, New York
.
This content is only available via PDF.
Copyright © 2009
by American Society of Mechanical Engineers
You do not currently have access to this content.