The predictions of two numerical models of the deformation of fishing netting are compared. Analytical solutions are found to the differential equations that govern one of these models, and these solutions are used to evaluate the accuracy of both. There is very good agreement between the numerical solutions and the corresponding analytical values. The models are also applied to the deformation of networks where there is an in-plane shear resistance. Although there are no analytical solutions available, the similarity of the numerical solutions gives confidence in both methods.

1.
Lee
,
C. -W.
,
Lee
,
J. -H.
,
Cha
,
B. -J.
,
Kim
,
H. -Y.
, and
Lee
,
J. -H.
, 2005, “
Physical Modeling for Underwater Flexible Systems Dynamic Simulation
,”
Ocean Eng.
0029-8018,
32
, pp.
331
347
.
2.
Takagi
,
T.
,
Shimizu
,
T.
,
Suzuki
,
K.
,
Hiraishi
,
T.
, and
Yamamoto
,
K.
, 2004, “
Validity and Layout of ‘NaLa’: A Net Configuration and Loading Analysis System
,”
Fish. Res.
,
66
, pp.
235
243
. 0165-7836
3.
Theret
,
F.
, 1993, “
Etude de l’´equilibre de surfaces r’eticul’ees plac’ees dans un courant uniforme;application aux chalets
,” Ph.D. thesis, Ecole Centrale de Nantes, Nantes, France.
4.
Bessonneau
,
J. S.
, and
Marichal
,
D.
, 1998, “
Study of the Dynamics of Submerged Supple Nets (Applications to Trawls)
,”
Ocean Eng.
0029-8018,
25
(
7
), pp.
563
583
.
5.
Tsukrov
,
I.
,
Eroshkin
,
O.
,
Fredriksson
,
D. W.
,
Swift
,
M. R.
, and
Celikkol
,
B.
, 2003, “
Finite Element Modeling of Net Panels Using a Consistent Net Element
,”
Ocean Eng.
0029-8018,
30
, pp.
251
270
.
6.
Hu
,
F.
,
Shiode
,
D.
,
Wan
,
R.
, and
Tokai
,
T.
, 2006, “
Accuracy Evaluation of Numerical Simulation of Mid-Water Trawl Nets
,”
Contributions on the Theory of Fishing Gears and Related Marine Systems
, Vol.
4
,
C. -W.
Lee
, ed.,
Pukyong National University Press
,
Busan, Korea
.
7.
Niedzwiedz
,
G.
, and
Hopp
,
M.
, 1998, “
Rope and Net Calculations Applied to Problems in Marine Engineering and Fisheries Research
,”
Arch. Fish. Mar. Res.
,
46
, pp.
125
138
.
8.
Le Dret
,
H.
,
Priour
,
D.
,
Lewandowski
,
R.
, and
Chagneau
,
F.
, 2004, “
Numerical Simulation of a Cod End Net Part 1: Equilibrium in a Uniform Flow
,”
J. Elast.
0374-3535,
76
(
2
), pp.
139
162
.
9.
Priour
,
D.
, 1999, “
Calculation of Net Shapes by the Finite Element Method With Triangular Elements
,”
Commun. Numer. Methods Eng.
1069-8299,
15
(
10
), pp.
755
763
.
10.
Steigmann
,
D. J.
, and
Pipkin
,
A. C.
, 1991, “
Equilibrium of Elastic Nets
,”
Philos. Trans. R. Soc. London, Ser. A
0962-8428,
335
, pp.
419
454
.
11.
Rivlin
,
R. S.
, 1958, “
The Deformation of a Membrane Formed by Inextensible Cords
,”
Arch. Ration. Mech. Anal.
0003-9527,
2
, pp.
447
476
.
12.
Kuznetsov
,
E. N.
, 1986, “
Kinetoelastostatics of Axisymmetric Nets
,”
ASME J. Appl. Mech.
0021-8936,
53
, pp.
891
896
.
13.
Kuznetsov
,
E. N.
, 1991,
Underconstrained Structural Systems
,
Springer
,
New York
.
14.
Pipkin
,
A. C.
, 1980, “
Some Developments in the Theory of Inextensible Networks
,”
Q. Appl. Math.
0033-569X,
38
, pp.
343
355
.
15.
O’Neill
,
F. G.
, 1997, “
Differential Equations Governing the Geometry of a Diamond Mesh Cod-End of a Trawl Net
,”
ASME J. Appl. Mech.
0021-8936,
64
(
1
), pp.
7
14
.
16.
O’Neill
,
F. G.
, 1999, “
Axisymmetrical Trawl Cod-Ends Made From Netting of Generalized Mesh Shape
,”
IMA J. Appl. Math.
0272-4960,
62
, pp.
245
262
.
17.
Priour
,
D.
, 2001, “
Introduction of Mesh Resistance to Opening in a Triangular Element for Calculation of Nets by the Finite Element Method
,”
Commun. Numer. Methods Eng.
1069-8299,
17
(
4
), pp.
229
237
.
18.
O’Neill
,
F. G.
, 2002, “
The Bending of Twines and Fibres Under Tension
,”
J. Text. Inst., Part 1
,
93
, pp.
1
10
.
19.
Kuznetsov
,
E. N.
, 1982, “
Axisymmetric Static Nets
,”
Int. J. Solids Struct.
0020-7683,
18
, pp.
1103
1112
.
20.
Kuznetsov
,
E. N.
, 1997, private communication.
21.
O’Neill
,
F. G.
, 2004, “
The Influence of Bending Stiffness on the Deformation of Axisymmetric Networks
,”
23rd International Conference on Offshore Mechanics and Artic Engineering
.
22.
O’Neill
,
F. G.
, and
Herrmann
,
B.
, 2007, “
PRESEMO—A Predictive Model of Cod-End Selectivity–A Tool for Fisheries Managers
,”
ICES J. Mar. Sci.
1054-3139,
64
, pp.
1558
1568
.
23.
Gradshteyn
,
I. S.
, and
Ryzhik
,
I. M.
, 1965,
Table of Integrals, Series and Products
,
Academic
,
New York
.
This content is only available via PDF.
You do not currently have access to this content.