In this paper, the M-integral is extended for calculating intensity factors for cracked piezoelectric ceramics using the exact boundary conditions on the crack faces. The poling direction is taken at an angle to the crack faces within the plane. Since an analytical solution exists, the problem of a finite length crack in an infinite body subjected to crack face traction and electric flux density is examined. In this case, poling is taken parallel to the crack faces. Numerical difficulties resulting from multiplication of large and small numbers were treated by normalizing the variables. This problem was solved with the M-integral and displacement-potential extrapolation methods. With this example, the superiority of the conservative integral is observed. The values for the intensity factor obtained with the M-integral are found to be more accurate than those found by means of the extrapolation method. In addition, a crack parallel to the poling direction in a four-point bend specimen subjected to both an applied load and an electric field was analyzed and different electric permittivity values in the crack gap were assumed. It is seen that the electric permittivity greatly influences the stress intensity factor KII and the electric flux density intensity factor KIV. The absolute value of these intensity factors increases with an increase in the value of the electric permittivity in the crack. The influence of the permittivity on KI is rather small.

1.
Landis
,
C. M.
, 2004, “
Energetically Consistent Boundary Conditions for Electromechanical Fracture
,”
Int. J. Solids Struct.
0020-7683,
41
(
22–23
), pp.
6291
6315
.
2.
Parton
,
V. Z.
, 1976, “
Fracture Mechanics of Piezoelectric Materials
,”
Acta Astronaut.
0094-5765,
3
(
9–10
), pp.
671
683
.
3.
Deeg
,
W. F. J.
, 1980, “
The Analysis of Dislocation, Crack, and Inclusion Problems in Piezoelectric Solids
,” Ph.D. thesis, Stanford University, Palo Alto, CA.
4.
Pak
,
Y. E.
, 1990, “
Crack Extension Force in a Piezoelectric Material
,”
ASME J. Appl. Mech.
0021-8936,
57
(
3
), pp.
647
653
.
5.
Hao
,
T.-H.
, and
Shen
,
Z.-Y.
, 1994, “
A New Electric Boundary Condition of Electric Fracture Mechanics and Its Applications
,”
Eng. Fract. Mech.
0013-7944,
47
(
6
), pp.
793
802
.
6.
Zhang
,
T. Y.
, and
Gao
,
C. F.
, 2004, “
Fracture Behaviors of Piezoelectric Materials
,”
Theor. Appl. Fract. Mech.
0167-8442,
41
(
1–3
), pp.
339
379
.
7.
McMeeking
,
R. M.
, 2004, “
The Energy Release Rate for a Griffith Crack in a Piezoelectric Material
,”
Eng. Fract. Mech.
0013-7944,
71
(
7–8
), pp.
1149
1163
.
8.
Ding
,
H.
,
Wang
,
G.
, and
Chen
,
W.
, 1998, “
A Boundary Integral Formulation and 2D Fundamental Solutions for Piezoelectric Media
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
158
(
1–2
), pp.
65
80
.
9.
Kuna
,
M.
, 1998, “
Finite Element Analyses of Crack Problems in Piezoelectric Structures
,”
Comput. Mater. Sci.
,
13
(
1–3
), pp.
67
80
. 0927-0256
10.
Shang
,
F.
,
Kuna
,
M.
, and
Scherzer
,
M.
, 2002, “
Analytical Solutions for Two Penny-Shaped Crack Problems in Thermo-Piezoelectric Materials and Their Finite Element Comparisons
,”
Int. J. Fract.
0376-9429,
117
(
2
), pp.
113
128
.
11.
Shang
,
F.
,
Kuna
,
M.
and
Abendroth
,
M.
, 2003, “
Finite Element Analyses of Three-Dimensional Crack Problems in Piezoelectric Structures
,”
Eng. Fract. Mech.
0013-7944,
70
(
2
), pp.
143
160
.
12.
Wippler
,
K.
,
Ricoeur
,
A.
, and
Kuna
,
M.
, 2004, “
Towards the Computation of Electrically Permeable Cracks in Piezoelectrics
,”
Eng. Fract. Mech.
,
71
(
18
), pp.
2567
2587
. 0013-7944
13.
Heyer
,
V.
,
Schneider
,
G. A.
,
Balke
,
H.
,
Drescher
,
J.
, and
Bahr
,
H.-A.
, 1998, “
A Fracture Criterion for Conducting Cracks in Homogeneously Poled Piezoelectric PZT-PIC 151 Ceramics
,”
Acta Mater.
1359-6454,
46
(
18
), pp.
6615
6622
.
14.
Gruebner
,
O.
,
Kamlah
,
M.
, and
Munz
,
D.
, 2003, “
Finite Element Analysis of Cracks in Piezoelectric Materials Taking Into Account the Permittivity of the Crack Medium
,”
Eng. Fract. Mech.
,
70
(
11
), pp.
1399
1413
. 0013-7944
15.
Abendroth
,
M.
,
Groh
,
U.
,
Kuna
,
M.
, and
Ricoeur
,
A.
, 2002, “
Finite Element-Computation of the Electromechanical J-Integral for 2-D and 3-D Crack Analysis
,”
Int. J. Fract.
,
114
(
4
), pp.
359
378
. 0376-9429
16.
Ricoeur
,
A.
, and
Kuna
,
M.
, 2003, “
Influence of Electric Fields on the Fracture of Ferroelectric Ceramics
,”
J. Eur. Ceram. Soc.
,
23
(
8
), pp.
1313
1328
. 0955-2219
17.
Enderlein
,
M.
,
Ricoeur
,
A.
, and
Kuna
,
M.
, 2005, “
Finite Element Techniques for Dynamic Crack Analysis in Piezoelectrics
,”
Int. J. Fract.
,
134
(
3–4
), pp.
191
208
. 0376-9429
18.
Banks-Sills
,
L.
,
Motola
,
Y.
, and
Shemesh
,
L.
, 2008, “
The M-Integral for Calculating Intensity Factors of an Impermeable Crack in a Piezoelectric Material
,”
Eng. Fract. Mech.
0013-7944,
75
(
5
), pp.
901
925
.
19.
Ikeda
,
T.
, 1990,
Fundamentals of Piezoelectricity
,
Oxford University Press
,
Oxford, UK
.
20.
Qin
,
Q. H.
, 2001,
Fracture Mechanics of Piezoelectric Materials
,
WIT
,
Southampton, UK
.
21.
Yau
,
J. F.
,
Wang
,
S. S.
, and
Corten
,
H. T.
, 1980, “
A Mixed-Mode Crack Analysis of Isotropic Solids Using Conservation Laws of Elasticity
,”
ASME J. Appl. Mech.
,
47
(
2
), pp.
335
341
. 0021-8936
22.
Wang
,
S. S.
,
Yau
,
J. F.
, and
Corten
,
H. T.
, 1980, “
A Mixed-Mode Crack Analysis of Rectilinear Anisotropic Solids Using Conservation Laws of Elasticity
,”
Int. J. Fract.
0376-9429,
16
(
3
), pp.
247
259
.
23.
Suo
,
Z.
,
Kuo
,
C.-M.
,
Barnett
,
D. M.
, and
Willis
,
J. R.
, 1992, “
Fracture Mechanics for Piezoelectric Ceramics
,”
J. Mech. Phys. Solids
0022-5096,
40
(
4
), pp.
739
765
.
24.
Banks-Sills
,
L.
, and
Sherman
,
D.
, 1992, “
On the Computation of Stress Intensity Factors for Three-Dimensional Geometries by Means of the Stiffness Derivative and J-Integral Methods
,”
Int. J. Fract.
,
53
(
1
), pp.
1
20
. 0376-9429
25.
2004,
ANSYS
, Release 9, Ansys, Inc., Canonsburg, PA.
26.
Berlincourt
,
D.
, and
Krueger
,
H. A.
, 1959, “
Properties of Morgan Electro Ceramic Ceramics
,”
Morgan Electro Ceramics
, Report No. TP-226.
27.
Pak
,
Y. E.
, 1992, “
Linear Electro-Elastic Fracture Mechanics of Piezoelectric Materials
,”
Int. J. Fract.
0376-9429,
54
(
1
), pp.
79
100
.
28.
ESIS Procedures and Documentations, 2000,
ESIS P5-00/VAMAS: Procedure for Determining the Fracture Toughness of Ceramics Using the Single-Edge-V-Notched Beam (SEVNB) Method
,
European Structural Integrity Society
,
Dubendorf, Switzerland
.
29.
Jelitto
,
H.
,
Keßler
,
H.
,
Schneider
,
G. A.
, and
Balke
,
H.
, 2005, “
Fracture Behavior of Poled Piezoelectric PZT Under Mechanical and Electrical Loads
,”
J. Eur. Ceram. Soc.
0955-2219,
25
(
5
), pp.
749
757
.
30.
Schneider
,
G. A.
,
Felten
,
F.
, and
McMeeking
,
R. M.
, 2003, “
The Electrical Potential Difference Across Cracks in PZT Measured by Kelvin Probe Microscopy and the Implications for Fracture
,”
Acta Mater.
1359-6454,
51
(
8
), pp.
2235
2241
.
You do not currently have access to this content.