Rigorous scale-dependent bounds on the constitutive response of random polycrystalline aggregates are obtained by setting up two stochastic boundary value problems (Dirichlet and Neumann type) consistent with the Hill condition. This methodology enables one to estimate the size of the representative volume element (RVE), the cornerstone of the separation of scales in continuum mechanics. The method is illustrated on the single-phase and multiphase aggregates, and, generally, it turns out that the RVE is attained with about eight crystals in a 3D system. From a thermodynamic perspective, one can also estimate the scale dependencies of the dissipation potential in the velocity space and its complementary potential in the force space. The viscoplastic material, being a purely dissipative material, is ideally suited for this purpose.

1.
Taylor
,
G. I.
, 1938, “
Plastic Strain in Metals
,”
J. Inst. Met.
0020-2975,
62
, pp.
307
324
.
2.
Sachs
,
G.
, 1928, “
Zur Ableitung einer Fliessbedingung
,”
Z. Ver. Deutsch. Ing.
,
72
, pp.
734
736
.
3.
Canova
,
G. R.
, 1994, “
Self-Consistent Methods: Application to the Prediction of the Deformation Texture of Polyphase Materials
,”
Mater. Sci. Eng., A
0921-5093,
175
, pp.
37
42
.
4.
Hill
,
R.
, 1965, “
Continuum Micro-Mechanics of Elastoplastic Polycrystals
,”
J. Mech. Phys. Solids
0022-5096,
13
, pp.
89
101
.
5.
Hutchinson
,
J. W.
, 1970, “
Elastic-Plastic Behaviour of Polycrystalline Metals and Composites
,”
Proc. R. Soc. London, Ser. A
1364-5021,
319
, pp.
247
272
.
6.
Tome
,
C. N.
, and
Canova
,
G. R.
, 1998, “
Self-Consistent Modeling of Heterogeneous Plasticity
,”
Texture and Anisotropy: Preferred Orientations in Polycrystals and Their Effect on Materials Properties
,
U. F.
Kocks
,
C. N.
Tomé
, and
H.-R.
Wenk
, eds.,
Cambridge University Press
,
Cambridge
, pp.
466
511
.
7.
Maugin
,
G. A.
, 1992,
The Thermomechanics of Plasticity and Fracture
,
Cambridge University Press
,
Cambridge
, pp.
174
205
.
8.
Jiang
,
M.
,
Ostoja-Starzewski
,
M.
, and
Jasiuk
,
I.
, 2001, “
Scale-Dependent Bounds on Effective Elastoplastic Response of Random Composites
,”
J. Mech. Phys. Solids
0022-5096,
49
, pp.
655
673
.
9.
Li
,
W.
, and
Ostoja-Starzewski
,
M.
, 2006, “
Yield of Random Elasto-Plastic Materials
,”
J. Mech. Mater. Struct.
1559-3959,
1
, pp.
1055
1073
.
10.
Ostoja-Starzewski
,
M.
,
Du
,
X.
,
Khisaeva
,
Z. F.
, and
Li
,
W.
, 2007, “
On the Size of Representative Volume Element in Elastic, Plastic, Thermoelastic, and Permeable Random Microstructures
,”
Mater. Sci. Forum
0255-5476,
539–543
, pp.
201
206
.
11.
Ostoja-Starzewski
,
M.
, 2007,
Microstructural Randomness and Scaling in Mechanics of Materials
,
Chapman and Hall
,
London
.
12.
Hazanov
,
S.
, 1998, “
Hill Condition and Overall Properties of Composites
,”
Arch. Appl. Mech.
0939-1533,
68
, pp.
385
394
.
13.
Ostoja-Starzewski
,
M.
, 2006, “
Material Spatial Randomness—From Statistical to Representative Volume Element
,”
Probab. Eng. Mech.
0266-8920,
21
, pp.
112
132
.
14.
Ziegler
,
H.
, 1983,
An Introduction to Thermomechanics
,
North-Holland
,
Amsterdam
.
15.
Ostoja-Starzewski
,
M.
, 2005, “
Scale Effects in Plasticity of Random Media: Status and Challenges
,”
Int. J. Plast.
0749-6419,
21
, pp.
1119
1160
.
16.
Kok
,
S.
,
Beaudoin
,
A. J.
, and
Tortorelli
,
D. A.
, 2002, “
A Polycrystal Plasticity Model Based on the Mechanical Threshold
,”
Int. J. Plast.
0749-6419,
18
, pp.
715
741
.
17.
Kocks
,
U. F.
,
Argon
,
A. S.
, and
Ashby
,
M. F.
, 1975,
Thermodynamics and Kinetics of Slip
(
Progress in Materials Science
Vol.
19
)
Pergamon
,
New York
.
18.
Varshni
,
Y. P.
, 1970, “
Temperature Dependence of the Elastic Constants
,”
Phys. Rev. B
0556-2805,
2
, pp.
3952
3958
.
19.
Chen
,
S. R.
, and
Gray
,
G. T.
, 1996, “
Constitutive Behaviour of Tantalum and Tantalum-Tungsten Alloys
,”
Metall. Mater. Trans. A
1073-5623,
27A
, pp.
2994
3006
.
20.
Shoemake
,
K.
, 1992, in
Uniform Random Rotations
,
Graphics Gems
Vol.
III
,
D.
Kirk
, ed.,
Academic
,
London
, pp.
124
132
.
21.
Ranganathan
,
S. I.
, and
Ostoja-Starzewski
,
M.
, 2008, “
Scaling Function, Anisotropy and the Size of RVE in Elastic Random Polycrystals
,”
J. Mech. Phys. Solids
0022-5096, to be published.
You do not currently have access to this content.