Abstract

The paper presents the spectral stiffness microplane model, which is a general constitutive model for unidirectional composite laminates, able to simulate the orthotropic stiffness, prepeak nonlinearity, failure envelopes, and, in tandem with the material characteristic length, also the post-peak softening and fracture. The framework of the microplane model is adopted. The model exploits the spectral decomposition of the transversely isotropic stiffness matrix of the material to define orthogonal strain modes at the microplane level. This decomposition is a generalization of the volumetric-deviatoric split already used by Bažant and co-workers in microplane models for concrete, steel, rocks, soils, and stiff foams. Linear strain-dependent yield limits (boundaries) are used to provide bounds for the normal and tangential microplane stresses, separately for each mode. A simple version, with an independent boundary for each mode, can capture the salient aspects of the response of a unidirectional laminate, although a version with limited mode coupling can fit the test data slightly better. The calibration of model parameters, verification by test data, and analysis of multidirectional laminates are postponed for the subsequent companion paper.

References

1.
Rosen
,
B. W.
, 1964, “
Tensile Failure of Fibrous Composites
,”
AIAA J.
0001-1452,
2
, pp.
1985
1991
.
2.
Rosen
,
B. W.
, 1965, “
Mechanics of Composite Strengthening
,”
Fiber Composite Materials
,
ASM
, Metals Park, Ohio, Chap. 3.
3.
Adams
,
D. F.
, and
Doner
,
D. R.
, 1967, “
Transverse Normal Loading of a Unidirectional Composite
,”
J. Compos. Mater.
0021-9983,
1
, pp.
152
164
.
4.
Adams
,
D. F.
, and
Doner
,
D. R.
, 1967, “
Longitudinal Shear Loading of a Unidirectional Composite
,”
J. Compos. Mater.
0021-9983,
1
(
1
), pp.
4
17
.
5.
Bažant
,
Z. P.
, and
Cedolin
,
L.
, 2003,
Stability of Structures: Elastic, Inelastic, Fracture and Damage Theories
, 2nd ed.,
Dover Publications
, New York.
6.
Engineering Mechanics of Composite Materials
, 1994,
I. M.
Daniel
, and
O.
Ishai
, eds.,
Oxford University Press
, New York.
7.
Composite Engineering Handbook
, 1997,
P. K.
Mallik
, ed.,
Marcel Dekker
, New York.
8.
Tsai
,
S. W.
, and
Wu
,
E. M.
, 1972, “
A General Theory of Strength for Anisotropic Materials
,”
J. Compos. Mater.
0021-9983,
5
, pp.
58
80
.
9.
Bažant
,
Z. P.
,
Daniel
,
I. M.
, and
Li
,
Z.
, 1996, “
Size Effect and Fracture Characteristics of Composite Laminates
,”
ASME J. Eng. Mater. Technol.
0094-4289
118
(
3
), pp.
317
324
.
10.
Bažant
,
Z. P.
,
Kim
,
J.-J. H.
,
Kim
,
D. I. M.
,
,
Becq-Giraudon
,
E.
, and
Zi
,
G.
, 1999, “
Size Effect on Compression Strength of Fiber Composites Failing by Kink Band Propagation
,”
Int. J. Fract.
0376-9429,
95
, pp.
103
141
.
11.
Bažant
,
Z. P.
,
Zhou
,
Y.
,
Zi
,
G.
, and
Daniel
,
I. M.
, 2003, “
Size Effect and Asymptotic Matching Analysis of Fracture of Closed-Cell Polymeric Foam
,”
Int. J. Solids Struct.
0020-7683,
40
, pp.
7197
7217
.
12.
Bažant
,
Z. P.
,
Zhou
,
Y.
,
Novák
,
D.
, and
Daniel
,
I. M.
, 2004, “
Size Effect on Flexural Strength of Fiber Composite Laminate
,”
ASME J. Eng. Mater. Technol.
0094-4289,
126
(
1
), pp.
29
37
.
13.
Bažant
,
Z. P.
,
Zhou
,
Y.
,
Daniel
,
I. M.
,
Caner
,
F. C.
, and
Yu
,
Q.
, 2006, “
Size Effect on Strength of Laminate-Foam Sandwich Plates
,”
ASME J. Eng. Mater. Technol.
0094-4289,
128
(
3
), pp.
366
374
.
14.
Bayldon
,
J. M.
,
Bažant
,
Z. P.
,
Daniel
,
I. M.
, and
Yu
,
Q.
, 2006, “
Size Effect on Compressive Strength of Sandwich Panels With Fracture of Woven Laminate Facesheet
,”
ASME J. Eng. Mater. Technol.
0094-4289,
128
, pp.
169
174
.
15.
Zi
,
G.
, and
Bažant
,
Z. P.
, 2003, “
Eigenvalue Method for Computing Size Effect of Cohesive Cracks With Residual Stress, With Application to Kink Bands in Composites
,”
Int. J. Eng. Sci.
0020-7225,
41
(
13-14
), pp.
1519
1534
.
16.
Bažant
,
Z. P.
, 2002,
Scaling of Structural Strength
, 2nd ed.,
Elsevier
, London.
17.
Bažant
,
Z. P.
, 2004, “
Scaling Theory for Quasibrittle Structural Failure
,”
Proc. Natl. Acad. Sci. U.S.A.
0027-8424,
101
(
37
), pp.
14000
14007
.
18.
Taylor
,
G. I.
, 1938, “
Plastic Strain in Metals
,”
J. Inst. Met.
0020-2975,
62
, pp.
307
324
.
19.
Batdorf
,
S. B.
, and
Budiansky
,
B.
, 1949, “
A Mathematical Theory of Plasticity Based on the Concept of Slip
,” Nat. Advisory Committee for Aeronautics, Washington, D.C., Technical Note No. 1871.
20.
Bažant
,
Z. P.
, and
Oh
,
B.-H.
, 1983, “
Microplane Model for Fracture Analysis of Concrete Structures
,”
Symp. on the Interaction of Non-Nuclear Munitions With Structures
, U.S. Air Force Academy, Colorado Springs, CO, pp.
49
53
.
21.
Bažant
,
Z. P.
, and
Oh
,
B.-H.
, 1985, “
Microplane Model for Progressive Fracture of Concrete and Rock
,”
J. Eng. Mech.
0733-9399,
111
, pp.
559
582
.
22.
Bažant
,
Z. P.
,
Caner
,
F. C.
,
Carol
,
I.
,
Adley
,
M. D.
, and
Akers
,
S. A.
, 2000, “
Microplane Model M4 for Concrete: I. Formulation With Work-Conjugate Deviatoric Stress
,”
J. Eng. Mech.
0733-9399,
126
(
9
), pp.
944
953
.
23.
Bažant
,
Z. P.
,
Adley
,
M. D.
,
Carol
,
I.
,
Jirásek
,
M.
,
Akers
,
S. A.
,
Rohani
,
B.
,
Cargile
,
J. D.
, and
Caner
,
F. C.
, 2000b, “
Large-Strain Generalization of Microplane Model for Concrete and Application
,”
J. Eng. Mech.
0733-9399,
126
(
9
), pp.
971
980
.
24.
Bažant
,
Z. P.
, and
Prat
,
P. C.
, 1988, “
Microplane Model for Brittle Plastic Material: I. Theory
,”
J. Eng. Mech.
0733-9399
114
, pp.
1672
1688
.
25.
Bažant
,
Z. P.
,
Xiang
,
Y.
, and
Prat
,
P. C.
, 1996, “
Microplane Model for Concrete. I. Stress-Strain Boundaries and Finite Strain
,”
J. Eng. Mech.
0733-9399
122
(
3
), pp.
245
254
Bažant
,
Z. P.
,
Xiang
,
Y.
, and
Prat
,
P. C.
, 1996 (with Errata,
J. Eng. Mech.
0733-9399
123
(
3
), p.
411
).
26.
Caner
,
F. C.
, and
Bažant
,
Z. P.
, 2000, “
Microplane Model M4 for Concrete. II: Algorithm and Calibration
,”
J. Eng. Mech.
0733-9399,
126
(
9
), pp.
954
961
.
27.
Bažant
,
Z. P.
, and
Di Luzio
,
G.
, 2004, “
Nonlocal Microplane Model With Strain-Softening Yield Limits
,”
Int. J. Solids Struct.
0020-7683,
41
, pp.
7209
7240
.
28.
Bažant
,
Z. P.
, and
Caner
,
F. C.
, 2005, “
Microplane Model M5 With Kinematic and Static Constraints for Concrete Fracture and Anelasticity. I: Theory
,”
J. Eng. Mech.
0733-9399,
130
(
1
), pp.
31
40
.
29.
Bažant
,
Z. P.
, and
Caner
,
F. C.
, 2005, “
Microplane Model M5 With Kinematic and Static Constraints for Concrete Fracture and Anelasticity. II: Computation
,”
J. Eng. Mech.
0733-9399,
130
(
1
), pp.
41
47
.
30.
Bažant
,
Z. P.
, and
Zi
,
G.
, 2003, “
Microplane Constitutive Model for Porous Isotropic Rock
,”
Int. J. Numer. Analyt. Meth. Geomech.
0363-9061,
27
, pp.
25
47
.
31.
Bažant
,
Z. P.
, and
Prat
,
P. C.
, 1987, “
Creep of Anisotropic Clay: New Microplane Model
,”
J. Eng. Mech.
0733-9399,
113
(
7
), pp.
1000
1064
.
32.
Brocca
,
M.
, and
Bažant
,
Z. P.
, 2001, “
Microplane Finite Element Analysis of Tube-Squash Test Of Concrete With Angle up to 700
,”
Int. J. Numer. Methods Eng.
0029-5981,
52
, pp.
1165
1188
.
33.
Brocca
,
M.
,
Bažant
,
Z. P.
, and
Daniel
,
I. M.
, 2001, “
Microplane Model for Stiff Foams and Finite Element Analysis of Sandwich Failure by Core Indentation
,”
Int. J. Solids Struct.
0020-7683,
38
, pp.
8111
8132
.
34.
Beghini
,
A.
,
Bažant
,
Z. P.
,
Zhou
,
Y.
,
Gouirand
,
O.
, and
Caner
,
F. C.
, 2004, “
Microplane Model M5f for Fiber Reinforced Concrete: Non-Linear Triaxial Behavior, Strength and Softening
,”
J. Eng. Mech.
0733-9399,
133
(
1
), pp.
66
75
.
35.
Carol
,
I.
,
Jirásek
,
M.
, and
Bažant
,
Z. P.
, 2004, “
A Framework for Microplane Models at Large Strain, With Application to Hyperelasticity
,”
Int. J. Solids Struct.
0020-7683,
41
, pp.
511
557
.
36.
Kuhl
,
E.
, and
Ramm
,
E.
, 2000, “
Microplane Modelling of Cohesive Frictional Materials
,”
Eur. J. Mech. A/Solids
0997-7538,
19
, pp.
121
149
.
37.
Leukart
,
M.
, and
Ramm
,
E.
, 2006, “
Identification and Interpretation of Microplane Material Laws
,”
J. Eng. Mech.
0733-9399,
132
(
3
), pp.
295
305
.
38.
Elbing
,
K.
, 1994,
Foundations of Anisotropy for Exploration Seismics
,
Pergamon Press
, Oxford.
39.
Thomson
,
W.
, 1878, “
Mathematical Theory of Elasticity
,”
Encyclopedia Britannica
,
, Vol.
7
, pp.
819
825
.
40.
Rychlewski
,
J.
, 1995, “
Unconventional Approach to Linear Elasticity
,”
Arch. Mech.
0373-2029,
47
, pp.
149
171
.
41.
Theocaris
,
P. S.
, and
Sokolis
,
D. P.
, 1998, “
Spectral Decomposition of the Compliance Tensor for Anisotropic Plates
,”
J. Elast.
0374-3535,
51
, pp.
89
103
.
42.
Theocaris
,
P. S.
, and
Sokolis
,
D. P.
, 1999, “
Spectral Decomposition of the Linear Elastic Tensor for Monoclinic Symmetry
,”
Acta Crystallogr., Sect. A: Found. Crystallogr.
0108-7673,
A55
, pp.
635
647
.
43.
Theocaris
,
P. S.
, and
Sokolis
,
D. P.
, 2000, “
Spectral Decomposition of the Compliance Fourth-Rank Tensor for Orthotropic Materials
,”
Arch. Appl. Mech.
0939-1533,
70
, pp.
289
306
.
44.
Bažant
,
Z. P.
, and
Kim
,
J.-K.
, 1986, “
Creep of Anisotropic Clay: Microplane Model
,”
J. Geotech. Engrg.
0733-9410,
112
, pp.
458
475
.
45.
Beghini
,
A.
,
Cusatis
,
G.
, and
Bažant
,
Z. P.
, 2007, “
Spectral Stiffness Microplane Model for Quasibrittle Composite Laminates—Part II: Calibration and Validation
,”
ASME J. Appl. Mech.
0021-8936,
75
, p.
021010
.
46.
Bažant
,
Z. P.
, and
Planas
,
J.
, 1998,
Fracture and Size Effect in Concrete and Other Quasibrittle Materials
,
CRC Press
, Boca Raton, FL.
You do not currently have access to this content.