Abstract

This paper is devoted to the linear analysis of a slender homogeneous piezoelectric beam that undergoes tip loading. The solution of the Saint-Venant’s problem presented in this paper generalizes the known solution for a homogeneous elastic beam. The analytical approach in this study is based on the Saint-Venant’s semi-inverse method generalized to electroelasticity, where the stress, strain, and (electrical) displacement components are presented as a set of initially assumed expressions that contain tip parameters, six unknown coefficients, and three pairs of auxiliary (torsion/bending) functions in two variables. These pairs of functions satisfy the so-called coupled Neumann problem (CNP) in the cross-sectional domain. In the limit “elastic” case the CNP transforms to the Neumann problem, for a beam made of a poled piezoceramics the CNP is decomposed into two Neumann problems. The paper develops concepts of the torsion/bending functions, the torsional rigidity and shear center, the tip coupling matrix for a piezoelectric beam. Examples of exact and numerical solutions for elliptical and rectangular beams are presented.

References

1.
Bisegna
,
P.
, 1998, “
The Saint-Venant Problem in the Linear Theory of Piezoelectricity
,” Atti Convegni Lincei, Accad. Naz. Lincei, Rome, 140, pp.
151
165
.
2.
Daví
,
F.
, 1996, “
Saint-Venant’s Problem for Linear Piezoelectric Bodies
,”
J. Elast.
0374-3535,
43
, pp.
227
245
.
3.
dell'Isola
,
F.
, and
Rosa
,
L.
, 1996, “
Saint-Venant’s Problem in Linear Piezoelectricity
,” Mathematics and Control in Smart Structures, 2715, pp.
399
409
.
4.
Ieşan
,
D.
, 1989, “
On Saint-Venant’s Problem for Elastic Dielectrics
,”
J. Elast.
0374-3535,
21
, pp.
101
115
.
5.
Zanfir
,
S.
, 1985, “
Saint-Venant's Problem for Heterogeneous Anisotropic Dipolar Elastic Solids. I, II
,”
Bull. Math. Soc. Sci. Math. Repub. Soc. Roum.
, 29(77), pp.
177
187
;
Zanfir
,
S.
,
Bull. Math. Soc. Sci. Math. Repub. Soc. Roum.
,29(77), pp.
371
376
.
6.
Michell
,
J. H.
, 1901, “
The Theory of Uniformly Loaded Beams
,”
Journal of Mathematics
, 32, pp.
28
42
.
7.
Kudryavtsev
,
B. A.
,
Parton
,
V. Z.
, and
Senik
,
N. A.
, 1990, “
Electromagnetoelasticity
,”
Applied Mechanics: Soviet Reviews
, Vol.
2
,
Hemisphere
,
Washington, DC
, pp.
1
230
.
8.
Rand
,
O.
, and
Rovenski
,
V.
, 2005,
Analytical Methods in Anisotropic Elasticity With Symbolic Computational Tools
,
Birkhauser
,
Boston
.
9.
Rovenski
,
V.
,
Harash
,
E.
, and
Abramovich
,
H.
, 2006, “
St. Venant’s Problem for Homogeneous Piezoelastic Beams
,”
TAE Report No. 967
,
1
100
.
10.
Ruchadze
,
A. K.
, 1975, “
On One Problem of Elastic Equilibrium of Homogeneous Isotropic Prismatic Bar (in Russian)
,”
Transactions of Georgian Polytechnical Institute
, 3(176), pp.
208
218
.
11.
St. Venant
,
B.
, 1856, “
Memoire Sur la Flexion des Prismes
,”
J. Math. Pures Appl.
0021-7824,
1
, pp.
89
189
.
12.
St. Venant
,
B.
, 1856, “
Memoire Sur la Torsion des Prismes
,”
Memoires Presentes par Divers Savants a l’academie des Sciences, Sciences math, et phys
. Paris, Vol. 14, pp.
233
560
.
13.
Batra
,
R. C.
, and
Yang
,
J. S.
, 1995, “
Saint-Venant’s Principle in Linear Piezoelectricity
,”
J. Elast.
0374-3535,
38
(
2
), pp.
209
218
.
14.
Horgan
,
C. O.
, and
Payne
,
L. E.
, 1997, “
Saint-Venant’s Principle in Linear Isotropic Elasticity for Incompressible or Nearly Incompressible Materials
,”
J. Elast.
0374-3535,
46
(
1
), pp.
43
52
.
15.
Xu
,
X. S.
,
Zhong
,
W. X.
, and
Zhang
,
H. W.
, 1997, “
The Saint-Venant Problem and Principle in Elasticity
,”
Internat. J. Solids Structures
, 34(22), pp.
2815
2827
.
16.
Cady
,
W. G.
, 1964,
Piezoelectricity—An Introduction to the Theory and Applications of Electromechanical Phenomena in Crystals
, Vol.
1
,
Dover
.
17.
Yang
,
J.
, 2006,
The Mechanics of Piezoelectric Structures
,
World Scientific
.
You do not currently have access to this content.