By means of the Hankel transform and dual-integral equations, the nonlinear response of a penny-shaped dielectric crack with a permittivity κ0 in a transversely isotropic piezoelectric ceramic is solved under the applied tensile stress σzA and electric displacement DzA. The solution is given through the universal relation, DcσzA=KDKI=MDMσ, regardless of the electric boundary conditions of the crack, where Dc is the effective electric displacement of the crack medium, and KD and KI are the electric displacement and the stress intensity factors, respectively. The proportional constant MDMσ has been derived and found to have the characteristics: (i) for an impermeable crack it is equal to DzAσzA; (ii) for a permeable one it is only a function of the ceramic property; and (iii) for a dielectric crack with a finite κ0 it depends on the ceramic property, the κ0 itself, and the applied σzA and DzA. The latter dependence makes the response of the dielectric crack nonlinear. This nonlinear response is found to be further controlled by a critical state (σc,DzA), through which all the Dc versus σzA curves must pass, regardless of the value of κ0. When σzA<σc, the response of an impermeable crack serves as an upper bound, whereas that of the permeable one serves as the lower bound, and when σzA>σc the situation is exactly reversed. The response of a dielectric crack with any κ0 always lies within these bounds. Under a negative DzA, our solutions further reveal the existence of a critical κ*, given by κ*=RDzA, and a critical D*, given by D*=κ0R (R depends only on the ceramic property), such that when κ0>κ* or when DzA<D*, the effective Dc will still remain positive in spite of the negative DzA.

1.
Parton
,
V. Z.
, 1976, “
Fracture Mechanics of Piezoelectric Materials
,”
Acta Astronaut.
0094-5765,
3
, pp.
671
683
.
2.
Deeg
,
W. F.
, 1980, “
The Analysis of Dislocation, Crack and Inclusion Problems in Piezoelectric Solids
,” Ph.D. dissertation, Stanford University, Stanford, CA.
3.
Pak
,
Y. E.
, 1990, “
Crack Extension Force in a Piezoelectric Material
,”
J. Appl. Mech.
0021-8936,
57
, pp.
647
653
.
4.
Pak
,
Y. E.
, 1992, “
Linear Electro-elastic Fracture Mechanics of Piezoelectric Materials
,”
Int. J. Fract.
0376-9429,
54
, pp.
79
100
.
5.
Sosa
,
H.
, 1991, “
Plane Problems in Piezoelectric Media with Defects
,”
Int. J. Solids Struct.
0020-7683,
28
, pp.
491
505
.
6.
Sosa
,
H.
, 1992, “
On the Fracture Mechanics of Piezoelectric Solids
,”
Int. J. Solids Struct.
0020-7683,
29
, pp.
2613
2622
.
7.
Suo
,
Z.
,
Kuo
,
C.-M.
,
Barnett
,
D. M.
, and
Willis
,
J. R.
, 1992, “
Fracture Mechanics for Piezoelectric Ceramics
,”
J. Mech. Phys. Solids
0022-5096,
40
, pp.
739
765
.
8.
Park
,
S. B.
, and
Sun
,
C. T.
, 1995, “
Effect of Electric Field on Fracture of Piezoelectric Ceramics
,”
Int. J. Fract.
0376-9429,
70
, pp.
203
216
.
9.
McMeeking
,
R. M.
, 1989, “
Electrostrictive Stress near Crack-like Flaws
,”
J. Appl. Math.
1110-757X,
40
, pp.
615
627
.
10.
Zhang
,
T.-Y.
, and
Hack
,
J. E.
, 1992, “
Mode III Cracks in Piezoelectric Materials
,”
J. Appl. Phys.
0021-8979,
71
, pp.
5865
5870
.
11.
Zhang
,
T.-Y.
, 1994, “
Effect of Sample Width on the Energy Release Rate and Electric Boundary Conditions along Crack Surfaces in Piezoelectric Materials
,”
Int. J. Fract.
0376-9429,
66
, pp.
33
38
.
12.
Dunn
,
M. L.
, 1994, “
The Effect of Crack Face Boundary Conditions on the Fracture Mechanics of Piezoelectric Solid
,”
Eng. Fract. Mech.
0013-7944,
48
, pp.
25
39
.
13.
Sosa
,
H.
, and
Khutoryansky
,
N.
, 1996, “
New Developments Concerning Piezoelectric Materials with Defects
,”
Int. J. Solids Struct.
0020-7683,
33
, pp.
3399
3414
.
14.
Zhang
,
T.-Y.
,
Zhao
,
M.-H.
, and
Tong
,
P.
, 2001, “
Fracture of Piezoelectric Ceramics
,”
Adv. Appl. Mech.
0065-2156,
38
, pp.
147
289
.
15.
Li
,
S. F.
, and
Mataga
,
P. A.
, 1996, “
Dynamic Crack Propagation in Piezoelectric Materials. Part I: Electrode Solution
,”
J. Mech. Phys. Solids
0022-5096,
44
, pp.
1799
1830
.
16.
Li
,
S. F.
, and
Mataga
,
P. A.
, 1996, “
Dynamic Crack Propagation in Piezoelectric Materials. Part II: Vacuum
,”
J. Mech. Phys. Solids
0022-5096,
44
, pp.
1831
1866
.
17.
Wang
,
X. D.
, and
Meguid
,
S. A.
, 2000, “
Effect of Electromechanical Coupling on the Dynamic Interaction of Cracks in Piezoelectric Materials
,”
Acta Mech.
0001-5970,
143
, pp.
1
15
.
18.
Li
,
C. Y.
, and
Weng
,
G. J.
, 2002, “
Yoffe-type Moving Crack in a Functionally Graded Piezoelectric Material
,”
Proc. R. Soc. London, Ser. A
1364-5021,
458
, pp.
381
399
.
19.
Parton
,
V. Z.
, and
Kudryavtsev
,
B. A.
, 1988,
Electromagnetoelasticity
,
Gordon and Breach
,
New York
.
20.
Hao
,
T. H.
, and
Shen
,
Z. Y.
, 1994, “
A New Electric Boundary Condition of Electric Fracture Mechanics and Its Applications
,”
Eng. Fract. Mech.
0013-7944,
47
, pp.
793
802
.
21.
Shindo
,
Y.
,
Tanaka
,
K.
, and
Narita
,
F.
, 1997, “
Singular Stress and Electric Fields of a Piezoelectric Ceramic Strip with a Finite Crack under Longitudinal Shear
,”
Acta Mech.
0001-5970,
120
, pp.
31
45
.
22.
Yang
,
F.
, 2001, “
Fracture Mechanics for a Mode I crack in Piezoelectric Materials
,”
Int. J. Solids Struct.
0020-7683,
38
, pp.
3813
3830
.
23.
Shindo
,
Y.
,
Watanabe
,
K.
, and
Narita
,
F.
, 2000, “
Electroelastic Analysis of a Piezoelectric Ceramic Strip with a Central Crack
,”
Int. J. Eng. Sci.
0020-7225,
38
, pp.
1
19
.
24.
McMeeking
,
R. M.
, 2001, “
Towards a Fracture Mechanics for Brittle Piezoelectric and Dielectric Materials
,”
Int. J. Fract.
0376-9429,
108
, pp.
25
41
.
25.
Xu
,
X.-L.
, and
Rajapakse
,
R. K. N. D.
, 2001, “
On a Plane Crack in Piezoelectric Solids
,”
Int. J. Solids Struct.
0020-7683,
38
, pp.
7643
7658
.
26.
Wang
,
X. D.
, and
Jiang
,
L. Y.
, 2001, “
Fracture Behavior of Cracks in Piezoelectric Media with Electromechanically Coupled Boundary Conditions
,”
Proc. R. Soc. London, Ser. A
1364-5021,
458
, pp.
2545
2560
.
27.
Dascalu
,
C.
, and
Homentcovschi
,
D.
, 2002, “
An Intermediate Crack Model for Flaws in Piezoelectric Solids
,”
Acta Mech.
0001-5970,
154
, pp.
85
100
.
28.
Wang
,
B. L.
, and
Mai
,
Y.-W.
, 2003, “
On the Electrical Boundary Conditions on the Crack Surfaces in Piezoelectric Ceramics
,”
Int. J. Eng. Sci.
0020-7225,
41
, pp.
633
652
.
29.
Zhang
,
T. Y.
, and
Cao
,
C. F.
, 2004, “
Fracture Behaviors of Piezoelectric Materials
,”
Theor. Appl. Fract. Mech.
0167-8442,
41
, pp.
339
379
.
30.
Eshelby
,
J. D.
, 1957, “
The Determination of the Elastic Field of an Ellipsoidal Inclusion, and Related Problems
,”
Proc. R. Soc. London, Ser. A
1364-5021,
241
, pp.
376
396
.
31.
Wang
,
B.
, 1992, “
Three-Dimensional Analysis of a Flat Elliptical Crack in a Piezoelectric Material
,”
Int. J. Eng. Sci.
0020-7225,
30
, pp.
781
791
.
32.
Kogan
,
L.
,
Hui
,
C.-Y.
, and
Molkov
,
V.
, 1996, “
Stress and Induced Field of a Spheroidal Inclusion or a Penny-Shaped Crack in a Transversely Isotropic Piezoelectric Material
,”
Int. J. Solids Struct.
0020-7683,
33
, pp.
2719
2737
.
33.
Huang
,
J. H.
, 1997, “
A Fracture Criterion of a Penny-shaped Crack in Transversely Isotropic Piezoelectric Media
,”
Int. J. Solids Struct.
0020-7683,
34
, pp.
2631
2644
.
34.
Chiang
,
C. R.
, and
Weng
,
G. J.
, 2005, “
The Nature of Stress and Electric-displacement Concentration around a Strongly Oblate Cavity in a Transversely Isotropic Piezoelectric Material
,”
Int. J. Fract.
0376-9429,
134
, pp.
319
337
.
35.
Dunn
,
M. L.
, and
Wienecke
,
H. A.
, 1997, “
Inclusions and Inhomogeneity in Transversely Isotropic Piezoelectric Solids
,”
Int. J. Solids Struct.
0020-7683,
34
, pp.
3571
3582
.
36.
Chen
,
W. Q.
, and
Shioya
,
T.
, 1999, “
Fundamental Solution of a Penny-shaped Crack in a Piezoelectric Medium
,”
J. Mech. Phys. Solids
0022-5096,
47
, pp.
1459
1475
.
37.
Chen
,
W. Q.
, and
Shioya
,
T.
, 1999, “
Complete and Exact Solutions of a Penny-Shaped Crack in a Piezoelectric Solid: Antisymmetric Shear Loadings
,”
Int. J. Solids Struct.
0020-7683,
37
, pp.
2603
2619
.
38.
Fabricant
,
V. I.
, 1989,
Application of Potential Theory in Mechanics: A Selection of New Resutls
,
Kluwer Academic
,
Dordrecht, The Netherlands
.
39.
Ding
,
H. J.
,
Chen
,
B.
, and
Liang
,
J.
, 1997, “
On the Green’s Function for Two-phase Transversely Isotropic Piezoelectric Medi
,”
Int. J. Solids Struct.
0020-7683,
34
, pp.
3041
3057
.
40.
Zhao
,
M. H.
,
Shen
,
Y. P.
,
Liu
,
G. N.
, and
Liu
,
Y. J.
, 1999, “
Crack Analysis in Semi-infinite Transversely Isotropic Piezoelectric Solid II. Penny-shaped Crack near the Surface
,”
Theor. Appl. Fract. Mech.
0167-8442,
32
, pp.
233
240
.
41.
Yang
,
J. H.
, and
Lee
,
K. Y.
, 2001, “
Penny-Shaped Crack in a Three-Dimensional Piezoelectric Strip under In-plane Normal Loadings
,”
Acta Mech.
0001-5970,
148
, pp.
187
197
.
42.
Yang
,
J. H.
, and
Lee
,
K. Y.
, 2002, “
Three-Dimensional Non-Aaxisymmetric Behavior of a Penny-Shaped Crack in a Piezoelectric Strip Subjected to In-Plane Loads
,”
Eur. J. Mech. A/Solids
0997-7538,
21
, pp.
223
237
.
43.
Lin
,
S.
,
Narita
,
F.
, and
Shindo
,
Y.
, 2003, “
Electroelastic Analysis of a Penny-shaped Crack in a Piezoelectric Ceramic under Mode I Loading
,”
Mech. Res. Commun.
0093-6413,
30
, pp.
371
386
.
44.
Li
,
X. F.
, and
Lee
,
K. Y.
, 2004, “
Effects of Electric Field on Crack Growth for a Penny-shaped Dielectric Crack in a Piezoelectric Layer
,”
J. Mech. Phys. Solids
0022-5096,
52
, pp.
2079
2100
.
45.
Chen
,
W. Q.
, and
Lim
,
C. W.
, 2005, “
3D Point Force Solution for a Permeable Penny-Shaped Crack Embedded in an Infinite Transversely Isotropic Piezoelectric Medium
,”
Int. J. Fract.
0376-9429,
131
, pp.
231
246
.
46.
Hwang
,
S. C.
,
Lynch
,
C. S.
, and
McMeeking
,
R. M.
, 1995, “
Ferroelectric/Ferroelastic Interactions and a Polarization Switching Model
,”
Acta Metall. Mater.
0956-7151,
43
, pp.
2073
2084
.
47.
Li
,
J.
, and
Weng
,
G. J.
, 1999, “
A Theory of Domain Switch for the Nonlinear Behavior of Ferroelectrics
,”
Proc. R. Soc. London, Ser. A
1364-5021,
455
, pp.
3493
3511
.
48.
Li
,
W. F.
, and
Weng
,
G. J.
, 2002, “
A Theory of Ferroelectric Hysteresis with a Superimposed Stress
,”
J. Appl. Phys.
0021-8979,
91
, pp.
3806
3815
.
49.
Ikeda
,
T.
, 1996,
Fundamentals of Piezoelectricity
,
Oxford University Press
,
Oxford, UK
.
50.
Nye
,
J. F.
, 1979,
Physical Properties of Crystals
,
Oxford University Press
,
Oxford, UK
.
51.
Sneddon
,
I. N.
, 1951,
Fourier Transforms
,
McGraw-Hill
,
New York
.
52.
Stroh
,
A. N.
, 1958, “
Dislocations and Cracks in Anisotropic Elasticity
,”
Philos. Mag.
0031-8086,
3
, pp.
625
646
.
53.
Stroh
,
A. N.
, 1962, “
Steady State Problems in Anisotropic Elasticity
,”
J. Math. Phys.
0022-2488,
41
, pp.
77
103
.
54.
Lekhnitskii
,
S. G.
, 1963,
Theory of Elasticity of an Anisotropic Elastic Body
,
Holden-Day
,
San Francisco, CA
.
55.
Chiang
,
C. R.
, 2004, “
Some Crack Problems in Transversely Isotropic Solids
,”
Acta Mech.
0001-5970,
170
, pp.
1
9
.
56.
Kassir
,
M. K.
, and
Sih
,
G. C.
, 1975,
Three-Dimensional Crack Problems
,
Noordoff
,
Leyden
,
The Netherlands
.
57.
McMeeking
,
R. M.
, 1999, “
Crack Tip Energy Release Rate for a Piezoelectric Compact Tension Specimen
,”
Eng. Fract. Mech.
0013-7944,
64
, pp.
217
244
.
58.
Dunn
,
M. L.
, and
Taya
,
M.
, 1993, “
An Analysis of Piezoelectric Composite Materials Containing Ellipsoidal Inhomogeneities
,”
Proc. R. Soc. London, Ser. A
1364-5021,
443
, pp.
265
287
.
You do not currently have access to this content.