This paper addresses the identification of linear time-varying multi-degrees-of-freedom systems. The identification approach is based on the Hilbert transform and the empirical mode decomposition method with free vibration response signals. Three-different types of time-varying systems, i.e., smoothly varying, periodically varying, and abruptly varying stiffness and damping of a linear time-varying system, are studied. Numerical simulations demonstrate the effectiveness and accuracy of the proposed method with single- and multi-degrees-of-freedom dynamical systems.
Issue Section:
Technical Papers
1.
McNeil
, J. B.
, Kearney
, R. E.
, and Hunter
, I. W.
, 1992, “Identification of Time-Varying Biological Systems from Ensemble Data
,” IEEE Trans. Biomed. Eng.
0018-9294, 39
, pp. 1213
–1225
.2.
Verhaegen
, M.
, and Yu
, X.
, 1995, “A Class of Subspace Model Identification Algorithms to Identify Periodically and Arbitrarily Time-Varying Systems
,” Automatica
0005-1098, 31
, pp. 201
–216
.3.
Xu
, X.
, and Agrawal
, S. K.
, 2000, “Linear Time-Varying Dynamic Systems Optimization Via High-Order Method: A Sub-Domain Approach
,” ASME J. Vibr. Acoust.
0739-3717, 122
(1
), pp. 31
–35
.4.
Tan
, K. K.
, Huang
, S. N.
, Lee
, T. H.
, and Lim
, S. Y.
, 2003, “A Discrete-Time Iterative Learning Algorithm for Linear Time-Varying Systems
,” Eng. Applic. Artif. Intell.
0952-1976, 16
, pp. 185
–190
.5.
Lin
, C. C.
, Soong
, T. T.
, and Natke
, H. G.
, 1990, “Real-Time System Identification of Degrading Structures
,” J. Eng. Mech.
0733-9399, 116
, pp. 2258
–2274
.6.
Udwadia
, F. E.
, and Jerath
, N.
, 1980, “Time Variations of Structural Properties During Strong Ground Shaking
,” J. Eng. Mech. Div., Am. Soc. Civ. Eng.
0044-7951, 106
, pp. 111
–121
.7.
Shokoohi
, S.
, and Silverman
, L.
, 1987, “Identification and Model Reduction of Time-Varying Discrete-Time Systems
,” Automatica
0005-1098, 23
, pp. 509
–521
.8.
Liu
, K.
, 1997, “Identification of Linear Time-Varying Systems
,” J. Sound Vib.
0022-460X, 204
, pp. 487
–500
.9.
Liu
, K.
, and Deng
, L.
, 2004, “Experimental Verification of an Alogorithm for Identification of Linear Time-Varying Systems
,” J. Sound Vib.
0022-460X, 279
, pp. 1170
–1180
.10.
Learned
, R. E.
, and Willsky
, A. S.
, 1995, “A Wavelet Packet Approach to Transient Signal Classification
,” Appl. Comput. Harmon. Anal.
1063-5203, 2
(3
), pp. 265
–278
.11.
Kitada
, Y.
, 1998, “Identification of Nonlinear Structural Dynamic Systems Using Wavelets
,” J. Eng. Mech.
0733-9399, 124
(10
), pp. 1059
–1066
.12.
Hou
, Z.
, Noori
, M.
, and Amand
, R. S.
, 2000, “Wavelet-Based Approach for Structural Damage Detection
,” J. Eng. Mech.
0733-9399, 124
(10
), pp. 1059
–1066
.13.
Sun
, Z.
, and Chang
, C. C.
, 2002, “Structural Damage Assessment Based on Wavelet Packet Transform
,” J. Eng. Mech.
0733-9399, 128
(10
), pp. 1354
–1361
.14.
Sun
, Z.
, and Chang
, C. C.
, 2004, “Statistical Wavelet-Based Method for Structural Health Monitoring
,” J. Eng. Mech.
0733-9399, 130
(7
), pp. 1055
–1062
.15.
Amaratunga
, K.
, Williams
, J. R.
, Qian
, S.
, and Weiss
, J.
, 1994, “Wavelet-Galerkin Solutions for One Dimensional Partial Differential Equations
,” Int. J. Numer. Methods Eng.
0029-5981, 37
, pp. 2703
–2716
.16.
Ghanem
, R.
, and Romeo
, F.
, 2000, “A Wavelet-Based Approach for the Identification of Linear Time-Varying Dynamic Systems
,” J. Sound Vib.
0022-460X, 234
(4
), pp. 555
–576
.17.
Feldman
, M.
, 1994, “Non-Linear System Vibration Analysis Using Hilbert Transform—I: Free Vibration Analysis Method FREEVIB
,” Mech. Syst. Signal Process.
0888-3270, 8
(2
), pp. 119
–127
.18.
Feldman
, M.
, 1994, “Non-Linear System Vibration Analysis Using Hilbert Transform—II: Forced Vibration Analysis Method FORCEVIB
,” Mech. Syst. Signal Process.
0888-3270, 8
(3
), pp. 309
–318
.19.
Huang
, N. E.
, Shen
, Z.
, Long
, S. R.
, Wu
, M. C.
, Shih
, H. H.
, Zheng
, Q.
, Yen
, N. C.
, Tung
, C. C.
, and Liu
, H. H.
, 1998, “The Empirical Mode Decomposition and Hilbert Spectrum for Nonlinear and Nonstationary Time Series Analysis
,” Proc. R. Soc. London, Ser. A
1364-5021, 454
, pp. 903
–995
.20.
Yang
, J. N.
, Lei
, Y.
, Lin
, S.
, and Huang
, N.
, 2003, “System Identification of Linear Structures Based on Hilbert-Huang Spectral Analysis. Part 1: Normal Modes
,” Earthquake Eng. Struct. Dyn.
0098-8847, 32
, pp. 1443
–1467
.21.
Yang
, J. N.
, Lei
, Y.
, Lin
, S.
, and Huang
, N.
, 2004, “Identification of Natural Frequencies and Dampings of in Situ Tall Buildings Using Ambient Wind Vibration Data
,” J. Eng. Mech.
0733-9399, 130
(5
), pp. 570
–577
.22.
Stefan
, L. H.
, 1996, Hilbert Transform in Signal Processing
, Artech House Inc.
, Boston
.23.
Chan
, S. L.
, and Chui
, P. P. T.
, 2000, Non-Linear Static and Cyclic Analysis of Steel Frames With Semi-Rigid Connections
, Elsevier
, New York
.Copyright © 2007
by American Society of Mechanical Engineers
You do not currently have access to this content.