The eight-node solid-shell finite element models have been developed for the analysis of laminated composite plate/shell structures embedded with piezoelectric actuators and sensors. To resolve the locking problems of the solid-shell elements in laminated materials and improve accuracy, the assumed natural strain method and hybrid stress method are employed. Introduction of the concept of the electric nodes can effectively eliminate the burden of constraining the equality of the electric potential for the nodes lying on the same electrode. Furthermore, the nonlinear electric potential distribution in piezoelectric layer is described by introducing internal electric potential. The developed finite element models, especially electric potential node model, are simpler over other models but can still obtain same accuracy as exact solution described. Several examples are studied and compared with exact solution and other predicted results to illustrate the accuracy of the present model, and efficacy and effect caused by nonlinear electric potential distribution on frequency and electric fields in smart structure modeling.

1.
Chandrashekhara
,
K.
, and
Agarwal
,
A. N.
,
1993
, “
Active Vibration Control of Laminated Composite Plates Using Piezoelectric Devices: A Finite Element Approach
,”
J. Intell. Mater. Syst. Struct.
,
4
, pp.
496
508
.
2.
Detwiler
,
D. T.
,
Shen
,
M. H.
, and
Venkayya
,
V. B.
,
1995
, “
Finite Element Analysis of Laminated Composite Structures Containing Distributed Piezoelectric Actuators and Sensors
,”
Finite Elem. Anal. Design
,
20
, pp.
87
100
.
3.
Saravanos
,
D. A.
,
Heyliger
,
P. R.
, and
Hopkins
,
D. A.
,
1997
, “
Layerwise Mechanics and Finite Element for the Dynamic Analysis of Piezoelectric Composite Plates
,”
Int. J. Solids Struct.
,
34
, pp.
359
378
.
4.
Hwang
,
W. S.
, and
Park
,
H. C.
,
1993
, “
Finite Element Modelling of Piezoelectric Sensors and Actuators
,”
AIAA J.
,
31
, pp.
930
937
.
5.
Sze
,
K. Y.
, and
Yao
,
L. Q.
,
2000
, “
Modeling Smart Structures With Segmented Piezoelectric Sensors and Actuators
,”
J. Sound Vib.
,
235
, pp.
495
520
.
6.
Sze
,
K. Y.
,
Yao
,
L. Q.
, and
Yi
,
S.
,
2000
, “
A Hybrid-Stress ANS Solid-Shell Element and Its Generalization for Smart Structure Modeling—Part II: Smart Structure Modeling
,”
Int. J. Numer. Methods Eng.
,
48
, pp.
565
582
.
7.
Ha
,
S. K.
,
Keilers
,
C.
, and
Chang
,
F. K.
,
1992
, “
Finite Element Analysis of Composite Structures Containing Distributed Piezoelectric Sensors and Actuators
,”
AIAA J.
,
30
, pp.
772
780
.
8.
Kim
,
J.
,
Varadan
,
V. V.
, and
Varadan
,
V. K.
,
1997
, “
Finite Element Modelling of Structures Including Piezoelectric Active Devices
,”
Int. J. Numer. Methods Eng.
,
40
, pp.
817
832
.
9.
Tzou
,
H. S.
, and
Ye
,
R.
,
1996
, “
Analysis of Piezoelectric Structures With Laminated Piezoelectric Triangle Shell Elements
,”
AIAA J.
,
34
, pp.
110
115
.
10.
Tzou
,
H. S.
,
Tseng
,
C. I.
, and
Bahrami
,
H.
,
1994
, “
A Thin Piezoelectric Hexahedron Finite Element Applied to Design of Smart Continua
,”
Finite Elem. Anal. Design
,
16
, pp.
27
42
.
11.
Rao
,
S. S.
, and
Sunar
,
M.
,
1993
, “
Analysis of Distributed Thermopizoelectric Sensors and Actuators in Advanced Intelligent Structures
,”
Am. Inst. Aeronautics Astron. J.
,
31
, pp.
1280
1286
.
12.
Heyliger
,
P. R.
, and
Saravanos
,
D. A.
,
1995
, “
Exact Free-Vibration Analysis of Laminated Plates With Embedded Piezoelectric Layers
,”
J. Acoust. Soc. Am.
,
98
, pp.
1547
1557
.
13.
Lee
,
H. J.
, and
Saravanos
,
D. A.
,
1997
, “
Generalized Finite Element Formulation for Smart Multilayered Thermal Piezoelectric Composite Plates
,”
Int. J. Solids Struct.
,
34
, pp.
3355
3371
.
14.
Saravanos
,
D. A.
, and
Heyliger
,
P. R.
,
1994
, “
Coupled Layerwise Analysis of Composite Beams With Embedded Piezoelectric Sensors and Actuators
,”
J. Intell. Mater. Syst. Struct.
,
6
, pp.
350
363
.
15.
Heyliger
,
P. R.
,
Ramirez
,
G.
, and
Saravanos
,
D. A.
,
1994
, “
Coupled Discrete-Layer Finite Elements for Laminated Piezoelectric Plates
,”
Commun. Numer. Methods Eng.
,
10
, pp.
971
981
.
16.
Reddy
,
J. N.
,
1999
, “
On Laminated Composite Plates With Integrated Sensors and Actuators
,”
Eng. Struct.
,
21
, pp.
568
593
.
17.
Lammering
,
R.
,
1991
, “
The Application of a Finite Shell Element for Composites Containing Piezoelectric Polymers in Vibration Control
,”
Comput. Struct.
,
41
, pp.
1101
1109
.
18.
Wang
,
Z. D.
,
Chen
,
S. H.
, and
Han
,
W. Z.
,
1997
, “
The Static Shape Control for Intelligent Structures
,”
Finite Elem. Anal. Design
,
26
, pp.
303
314
.
19.
Lee
,
C. K.
,
1990
, “
Theory of Laminated Piezoelectric Plates for the Design of Distributed Sensors/Actuators. Part I: Governing Equations and Reciprocal Relationships
,”
J. Appl. Mech.
,
57
, pp.
434
441
.
20.
Sze
,
K. Y.
, and
Yao
,
L. Q.
,
2000
, “
A Hybrid-Stress ANS Solid-Shell Element and its Generalization for Smart Structure Modeling. Part I: Solid-Shell Element Formulation
,”
Int. J. Numer. Methods Eng.
,
48
, pp.
545
564
.
21.
Park
,
K. C.
, and
Stanley
,
G. M.
,
1986
, “
A Curved C0 Shell Element Based on Assumed Natural Coordinate Strains
,”
J. Appl. Mech.
,
53
, pp.
278
290
.
22.
Hauptmann
,
R.
, and
Schweizerhof
,
K.
,
1988
, “
A Systematic Development of Solid-Shell Element Formulations for Linear and Nonlinear Analysis Employing Only Displacement Degrees of Freedom
,”
Int. J. Numer. Methods Eng.
,
42
, pp.
49
69
.
23.
Sze
,
K. Y.
, and
Zhu
,
D.
,
1999
, “
A Quadratic Assumed Natural Strain Curved Triangular Shell Element
,”
Comput. Methods Appl. Mech. Eng.
,
174
, pp.
57
71
.
24.
Sze
,
K. Y.
,
Yi
,
S.
, and
Tay
,
M. H.
,
1997
, “
An Explicit Hybrid-Stabilized Eighteen-Node Solid Element for Thin Shell Analysis
,”
Int. J. Numer. Methods Eng.
,
40
, pp.
1839
1856
.
25.
Sze
,
K. Y.
, and
Pan
,
Y. S.
,
1999
, “
Hybrid Finite Element Models for Piezoelectric Materials
,”
J. Sound Vib.
,
26
, pp.
519
547
.
26.
Pian
,
T. H. H.
,
1985
, “
Finite Elements Based on Consistently Assumed Stresses and Displacements
,”
Finite Elem. Anal. Design
,
1
, pp.
131
140
.
27.
Sze
,
K. Y.
,
1992
, “
Efficient Formulation of Robust Hybrid Elements Using Orthogonal Stress/Strain Interpolants and Admissible Matrix Formulation
,”
Int. J. Numer. Methods Eng.
,
35
, pp.
1
20
.
28.
Crawly
,
J. L.
, and
Lazarus
,
K. B.
,
1991
, “
Induced Strain Actuation of Isotropic and Anisotropic Plate
,”
Am. Inst. Aeronautics Astron. J.
,
29
, pp.
944
951
.
29.
Sze
,
K. Y.
, and
Ghali
,
A.
,
1993
, “
An Hexahedral Element for Plates, Shells and Beams by Selective Scaling
,”
Int. J. Numer. Methods Eng.
,
36
, pp.
1519
1540
.
You do not currently have access to this content.