Impulsive problems for mechanical systems subject to kinematic constraints are discussed in this paper. In addition to the applied impulses, there may exist suddenly changed constraints, or termed impulsive constraints. To describe the states of the system during the impulsive motion, three different phases, i.e., prior motion, virtual motion, and posterior motion, are defined which are subject to different sets of constraints, and thus have different degrees-of-freedom. A fundamental principle, i.e., the principle of velocity variation, for the constrained impulsive motion is enunciated as a foundation to derive the privileged impulse-momentum equations. It is shown that for a system with no applied impulse, a conservation law can be stated as the conservation of the virtual-privileged momenta. The proposed methodology provides a systematic scheme to deal with various types of impulsive constraints, which is illustrated in the paper by solving the constrained impulsive problems for the motion of a sleigh.

1.
Appell, P., 1923, Traite´ de Me´canique Rationnelle, Vol. 2, 4th Ed., Gauthier-Villars, Paris.
2.
Whittaker, E. T., 1937, A Treatise on the Analytical Dynamics of Particles and Rigid Bodies, Cambridge, UK.
3.
Pars, L. A., 1965, A Treatise on Analytical Dynamics, Heinemann, London.
4.
Goldstein, H., 1980, Classical Mechanics, Addison-Wesley, Redding, MA.
5.
Rosenberg, R. M., 1977, Analytical Dynamics of Discrete Systems, Plenum Press, New York.
6.
Meirovitch, L., 1970, Methods of Analytical Dynamics, McGraw-Hill, New York.
7.
Kane
,
T. R.
,
1962
, “
Impulsive Motions
,”
ASME J. Appl. Mech.
,
29
, pp.
715
718
.
8.
Papastavridis
,
J. G.
,
1989
, “
Impulsive Motion of Ideally Constrained Mechanical Systems via Analytical Dynamics
,”
Int. J. Eng. Sci.
,
27
(
12
), pp.
1445
1461
.
9.
Stronge
,
W. J.
,
1990
, “
Rigid Body Collision With Friction
,”
Proc. R. Soc. London, Ser. A
,
431
, pp.
169
181
.
10.
Souchet
,
R.
,
1993
, “
Analytical Dynamics of Rigid Body Impulsive Motions
,”
Int. J. Eng. Sci.
,
31
(
1
), pp.
85
92
.
11.
Bahar
,
L. Y.
,
1994
, “
On The Use of Quasi-Velocities in Impulsive Motion
,”
Int. J. Eng. Sci.
,
32
(
11
), pp.
1669
1686
.
12.
Ibort
,
A.
,
de Leon
,
M.
,
Lacomba
,
E. A.
,
de Diego
,
D. Martin
, and
Pitanga
,
P.
,
1997
, “
Mechanical Systems Subjected to Impulsive Constraints
,”
J. Phys. A
,
30
, pp.
5835
5854
.
13.
Pfeiffer, F., and Glocker, C., 1996, Multibody Dynamics With Unilateral Contacts, John Wiley and Sons, New York.
14.
Brogliato, B., 1996, Nonsmooth Impact Mechanics: Models, Dynamics, and Control, Springer-Verlag, London.
15.
Lacomba
,
E. A.
, and
Tulczyjew
,
W. M.
,
1990
, “
Geometric Formulation of Mechanical Systems With One-sided Constraints
,”
J. Phys. A
,
23
, pp.
2801
2813
.
16.
Genot
,
F.
, and
Brogliato
,
B.
,
1999
, “
New Results on Painleve Paradoxes
,”
Eur. J. Mech. A/Solids
,
18
, pp.
653
677
.
17.
van der Schaft
,
A. J.
, and
Schumacher
,
J. M.
,
1999
, “
Complementarity Modeling of Hybrid Systems
,”
IEEE Trans. Autom. Control
,
43
(
4
), pp.
483
490
.
18.
Neimark, Ju. I., and Fufaev, N. A., 1972, Dynamics of Nonholonomic Systems (Vol. 33 of Translations of Mathematical Monographs) American Mathematical Society, Providence, RI.
19.
Greenwood, D. T., 1988, Principles of Dynamics, Prentice-Hall, Englewood Cliffs, NJ.
20.
Ibort
,
A.
,
de Leon
,
M.
,
Lacomba
,
E. A.
,
Marrero
,
J. C.
,
Martin de Diego
,
D.
, and
Pitanga
,
P.
,
1998
, “
Geometric Formulation of Mechanical Systems Subjected to Time-Dependent One-Sided constraints
,”
J. Phys. A
,
31
, pp.
2655
2674
.
21.
Corte´s
,
J.
,
de Leo´n
,
M.
,
de Diego
,
D. Marti´n
, and
Marti´nez
,
S.
,
2001
, “
Mechanical Systems Subjected to Generalized Non-holonomic Constraints
,”
Proc. R. Soc. London, Ser. A
,
457
, pp.
651
670
.
22.
Jourdain
,
P. E. B.
, 1909, “Note on an Analogue of Gauss’ Principle of Least Constraint,” Quart. J. Pure Appl. Math., 40, pp. 153–157.
23.
Roberson, R. E., and Schwertassek, R., 1988, Dynamics of Multibody Systems, Springer-Verlag, New York.
24.
Moon, F. C., 1998, Applied Dynamics, John Wiley and Sons, New York.
25.
Wang
,
L. S.
, and
Pao
,
Y. H.
,
2003
, “
Jourdain’s Variational Equation and Appell’s Equation of Motion for Nonholonomic Dynamical Systems
,”
Am. J. Phys.
,
73
(
1
), pp.
72
82
.
26.
Pao, Y. H., and Wang, L. S., 2002, “A Unified Variational Principle for Dynamics of Particles and of Continua,” submitted for journal publication.
27.
Lesser, M., 1995, The Analysis of Complex Nonlinear Mechanical Systems: A Computer Algebra Assisted Approach, World Scientific, Singapore.
28.
Kane
,
T. R.
, and
Levinson
,
D. A.
, 1980, “Formulation of Equations of Motion for Complex Spacecraft,” AIAA J. Guidance Control, 3(2), pp. 99–112.
29.
Scott
,
D.
,
1988
, “
Can a Projection Method of Obtaining Equations of Motion Compete With Lagrange’s Equations?
Am. J. Phys.
,
56
, pp.
451
456
.
30.
Blajer
,
W.
,
1992
, “
A Projection Method Approach to Constrained Dynamic Analysis
,”
ASME J. Appl. Mech.
,
59
, pp.
643
649
.
31.
Ibort
,
A.
,
de Leon
,
M.
,
Lacomba
,
E. A.
,
Marrero
,
J. C.
,
de Diego
,
D. Martin
, and
Pitanga
,
P.
,
2001
, “
Geometric Formulation of Carnot’s Theorem
,”
J. Phys. A
,
34
, pp.
1691
1712
.
32.
Arnold, V. I., 1989, Mathematical Methods of Classical Mechanics, 2nd Ed., Springer-Verlag, New York.
33.
Abraham, R., and Marsden, J. E., 1978, Foundations of Mechanics, 2nd Ed., Benjamin/Cummings, Reading, MA.
34.
Vershik
,
A. M.
, and
Faddeev
,
L. D.
, 1981, “Lagrangian Mechanics in Invariant Form,” Sel. Math. Sov., 1(4), pp. 339–350.
35.
Tulczyjew, W. M., 1989, Geometric Formulation of Physical Theories: Statics and Dynamics of Mechanical Systems, Bibliopolis, Naples.
36.
Gibbs
,
J. W.
,
1879
, “
On the Fundamental Formulas of Dynamics
,”
Am. J. Math.
,
2
, pp.
49
64
.
37.
Mach, E., 1960, The Science of Mechanics, Open Court, La Salle, IL.
38.
Arnold, V. I., ed., 1988, Dynamical Systems III (Vol. 3 of Encyclopedia of Mathematical Sciences), Springer-Verlag, New York.
39.
Chetaev
,
N. G.
, 1932, “On the Principle of Gauss,” Kazan Univ. Bull. Phys. Math. Soc., 6, pp. 68–71.
40.
Smith
,
C. E.
, and
Liu
,
P. P.
,
1992
, “
Coefficients of Restitution
,”
ASME J. Appl. Mech.
,
59
, pp.
963
969
.
41.
Weatherburn, C. E., 1921, Elementary Vector Analysis, Open Court, La Salle, IL.
42.
Junkins, John L., ed., 1990, Mechanics and Control of Large Flexible Structures, American Institute of Aeronautics and Astronautics, Washington, DC.
You do not currently have access to this content.