The first-passage failure of quasi-integrable Hamiltonian systems (multidegree-of-freedom integrable Hamiltonian systems subject to light dampings and weakly random excitations) is investigated. The motion equations of such a system are first reduced to a set of averaged Ito^ stochastic differential equations by using the stochastic averaging method for quasi-integrable Hamitonian systems. Then, a backward Kolmogorov equation governing the conditional reliability function and a set of generalized Pontryagin equations governing the conditional moments of first-passage time are established. Finally, the conditional reliability function, and the conditional probability density and moments of first-passage time are obtained by solving these equations with suitable initial and boundary conditions. Two examples are given to illustrate the proposed procedure and the results from digital simulation are obtained to verify the effectiveness of the procedure.

1.
Bharucha-Reid, A. T., 1960, Elements of Markov Processes and Their Applications, McGraw-Hill, New York.
2.
Cox, D. R., and Miller, H. D., 1965, The Theory of Stochastic Processes, Chapman and Hall, New York.
3.
Bergman
,
L. A.
, and
Heinrich
,
J. C.
,
1981
, “
On the Moments of Time to First Passage of the Linear Oscillator
,”
Earthquake Eng. Struct. Dyn.
,
9
, pp.
197
204
.
4.
Bergman
,
L. A.
, and
Heinrich
,
J. C.
,
1982
, “
On the Reliability of the Linear Oscillator and Systems of Coupled Oscillators
,”
Int. J. Numer. Methods Eng.
,
18
, pp.
1271
1295
.
5.
Sun
,
J. Q.
, and
Hsu
,
C. S.
,
1988
, “
First-Passage Time Probability of Non-Linear Stochastic Systems by Generalized Cell Mapping Method
,”
J. Sound Vib.
,
124
, pp.
233
248
.
6.
Sun
,
J. Q.
, and
Hsu
,
C. S.
,
1990
, “
The Generalized Cell Mapping Method in Nonlinear Random Vibration Based Upon Short Time Gaussian Approximation
,”
ASME J. Appl. Mech.
,
57
, pp.
1018
1025
.
7.
Ariaratnam
,
S. T.
, and
Pi
,
H. N.
,
1973
, “
On the First-Passage Time for Envelope Crossing for a Linear Oscillator
,”
Int. J. Control
,
18
, pp.
89
96
.
8.
Lennox
,
W. C.
, and
Fraser
,
D. A.
,
1974
, “
On the First Passage Distribution for the Envelope of a Non-stationary Narrow-Band Stochastic Process
,”
ASME J. Appl. Mech.
,
41
, pp.
793
797
.
9.
Ariaratnam
,
S. T.
, and
Tam
,
D. S. F.
,
1979
, “
Random Vibration and Stability of a Linear Parametrically Excited Oscillator
,”
Z. Angew. Math. Mech.
,
59
, pp.
79
84
.
10.
Spanos
,
P. D.
, and
Solomos
,
G. P.
,
1984
, “
Barrier Crossing due to Transient Excitation
,”
J. Eng. Mech.
,
110
, pp.
20
36
.
11.
Roberts
,
J. B.
,
1976
, “
First Passage Probability for Nonlinear Oscillator
,”
J. Eng. Mech.
,
102
, pp.
851
866
.
12.
Roberts
,
J. B.
,
1978
, “
First-Passage Time for Oscillator With Nonlinear Restoring Forces
,”
J. Sound Vib.
,
56
, pp.
71
86
.
13.
Roberts
,
J. B.
,
1986
, “
Response of an Oscillator With Nonlinear Damping and a Softening Spring to Non-White Random Excitation
,”
Probab. Eng. Mech.
,
1
, pp.
40
48
.
14.
Roberts
,
J. B.
,
1986
, “
First-Passage Time for Randomly Excited Nonlinear Oscillator
,”
J. Sound Vib.
,
109
, pp.
33
50
.
15.
Spanos
,
P. D.
,
1982
, “
Survival Probability of Non-Linear Oscillators Subjected to Broad-Band Random Disturbance
,”
Int. J. Non-Linear Mech.
,
17
, pp.
303
317
.
16.
Zhu, W. Q., and Lei, Y., 1989, “First Passage Time for State Transition of Randomly Excited Systems,” Proc. 47th Session of International Statistical Institute, LIII (Invited Papers), Book 3, pp. 517–531.
17.
Cai
,
G. Q.
, and
Lin
,
Y. K.
,
1994
, “
On Statistics of First-Passage Failure
,”
ASME J. Appl. Mech.
,
61
, pp.
93
99
.
18.
Zhu
,
W. Q.
, and
Yang
,
Y. Q.
,
1997
, “
Stochastic Averaging of Quasi-Non-Integrable-Hamiltonian Systems
,”
ASME J. Appl. Mech.
,
64
, pp.
157
164
.
19.
Zhu
,
W. Q.
,
Huang
,
Z. L.
, and
Yang
,
Y. Q.
,
1997
, “
Stochastic Averaging of Quasi-Integrable Hamiltonian Systems
,”
ASME J. Appl. Mech.
,
64
, pp.
975
984
.
20.
Zhu
,
W. Q.
,
Huang
,
Z. L.
, and
Suzuki
,
Y.
,
2002
, “
Stochastic Averaging and Lyapunov Exponent of Quasi Partially Integrable Hamiltonian Systems
,”
Int. J. Non-Linear Mech.
,
37
, pp.
419
437
.
21.
Zhu
,
W. Q.
, and
Huang
,
Z. L.
,
1998
, “
Stochastic Stability of Quasi-Non-Integrable-Hamiltonian Systems
,”
J. Sound Vib.
,
218
, pp.
769
789
.
22.
Zhu
,
W. Q.
, and
Huang
,
Z. L.
,
1999
, “
Stochastic Hopf Bifurcation of Quasi-Non-Integrable-Hamiltonian Systems
,”
Int. J. Non-Linear Mech.
,
34
, pp.
437
447
.
23.
Zhu
,
W. Q.
, and
Huang
,
Z. L.
,
1999
, “
Lyapunov Exponents and Stochastic Stability of Quasi-Integrable-Hamiltonian Systems
,”
ASME J. Appl. Mech.
,
66
, pp.
211
217
.
24.
Gan
,
C. B.
, and
Zhu
,
W. Q.
,
2001
, “
First-Passage Failure of Quasi-Non-Integrable-Hamiltonian Systems
,”
Int. J. Non-Linear Mech.
,
36
(
2
), pp.
209
220
.
25.
Zhu
,
W. Q.
, and
Ying
,
Z. G.
,
1999
, “
Optimal Nonlinear Feedback Control of Quasi-Hamiltonian Systems
,”
Sci. China, Ser. A: Math., Phys., Astron.
,
42
(
11
), pp.
1213
1219
.
26.
Zhu, W. Q., Ying, Z. G., and Soong, T. T., 1999, “Optimal Nonlinear Feedback Control of Structures Under Random Loading,” Stochastic Structural Dynamics, B. F. Spencer, Jr., and E. A. Johnson, eds., Balkema, Rotterdam, pp. 141–148.
27.
Zhu
,
W. Q.
,
Ying
,
Z. G.
,
Ni
,
Y. Q.
, and
Ko
,
J. M.
,
2000
, “
Optimal Nonlinear Stochastic Control of Hysteretic Systems
,”
J. Eng. Mech.
,
126
, pp.
1027
1032
.
28.
Zhu
,
W. Q.
,
Ying
,
Z. G.
, and
Soong
,
T. T.
,
2001
, “
An Optimal Nonlinear Feedback Control Strategy for Randomly Excited Structural Systems
,”
Nonlinear Dyn.
,
24
, pp.
31
51
.
29.
Zhu
,
W. Q.
, and
Ying
,
Z. G.
,
2002
, “
Nonlinear Stochastic Optimal Control of Partially Observable Linear Strucutres,
Eng. Struct.
,
24
, pp.
333
342
.
30.
Khasminskii
,
R. Z.
,
1968
, “
On the Averaging Principle for Stochastic Differential Ito^ Equations
,”
Kibernetica
,
4
, pp.
260
279
(in Russian).
31.
Roberts
,
J. B.
,
1978
, “
First Passage Time for Oscillators With Non-Linear Restoring Forces
,”
J. Sound Vib.
,
56
, pp.
71
86
.
You do not currently have access to this content.