A general correlation is derived between macroscopic stresses/strains and microscopic deformation on the damage surfaces for inhomogeneous elastic solids with two-dimensional damage. Assuming linear elastic behavior for the undamaged materials, the macroscopic deformation associated with nonlinear strains, or damage strains, is shown to be the weighted sum of the microscopic deformations on the damage surfaces. For inhomogeneous materials with periodic structures (laminated composites, for example) and various identifiable damage modes, simple relations are derived between the macroscopic deformation and microscopic damage. When the number of identifiable damage modes is less than or equal to the number of relevant measurable macroscopic strains, the correlation can be used to evaluate the damage progression from simple macroscopic stress and strain measurements. The simple case of a unidirectional fiber-reinforced composite under longitudinal load is used to show how the results can help detect and characterize the damage using macroscopic measurements, without resorting to assumptions of detailed microscopic deformation mechanisms.

1.
Luo
,
J. J.
, and
Daniel
,
I. M.
,
2000
, “
A cylinder Model for Characterization of Deformation and Damage Development in a Unidirectional Composite
,”
Compos. Sci. Technol.
,
60
, No.
15
, pp.
2791
2802
.
2.
Mura, T., 1987, Micromechanics of Defects in Solids, 2nd Ed., Nijhoff, Boston.
3.
Budiansky
,
B.
, and
O’Connel
,
R. J.
,
1976
, “
Elastic Moduli of a Cracked Solid
,”
Int. J. Solids Struct.
,
12
, pp.
81
97
.
4.
Horii
,
H.
, and
Nemat-Nasser
,
S.
,
1983
, “
Overall Moduli of Solids With Microcracks: Load-Induced Anisotropy
,”
J. Mech. Phys. Solids
,
31
, No.
2
, pp.
155
171
.
5.
Taya
,
M.
, and
Nemat-Nasser
,
S.
,
1981
, “
On Effective Moduli of an Elastic Body Containing Periodically Distributed Voids: Comments and Corrections
,”
Q. Appl. Math.
,
39
, pp.
43
59
.
6.
Deng
,
H.
, and
Nemat-Nasser
,
S.
,
1992
, “
Microcrack Arrays in Isotropic Solids
,”
Mech. Mater.
,
13
, No.
1
, pp.
15
36
.
7.
Accorsi
,
M. L.
, and
Nemat-Nasser
,
S.
,
1986
, “
Bounds on the Overall Elastic and Instantaneous Elastoplastic Moduli of Periodic Composites
,”
Mech. Mater.
,
5
, pp.
209
220
.
8.
Aveston, J., Cooper, G. A., and Kelly, A., 1971, “The Properties of Fibre Composites,” Conference Proceedings, National Physical Laboratory, IPC Science and Technology Press, Ltd., Guildford, UK, pp. 12–26.
9.
Aveston
,
J.
, and
Kelly
,
A.
,
1973
, “
Theory of Multiple Fracture of Fibrous Composites
,”
J. Mater. Sci.
,
8
, pp.
352
362
.
10.
Daniel, I. M., Anastassopoulos, G., and Lee, J.-W., 1989, “Experimental Micromechanics of Brittle-Matrix Composites,” Micromechanics: Experimental Techniques, Vol. 102, ASME, New York, pp. 133–146.
11.
Daniel
,
I. M.
,
Anastassopoulos
,
G.
, and
Lee
,
J.-W.
,
1993
, “
The Behavior of Ceramic Matrix Composites Under Longitudinal Loading
,”
Compos. Sci. Technol.
,
46
, pp.
105
113
.
12.
Lee, J.-W., and Daniel, I. M., 1992, “Deformation and Failure of Longitudinally Loaded Brittle-Matrix Composites,” ASTM, STP 1120, American Society for Testing and Materials, Philadelphia, PA.
13.
McCartney
,
L. N.
,
1989
, “
New Theoretical Model of Stress Transfer Between Fibre and Matrix in a Uniaxially Fibre-Reinforced Composite
,”
Proc. R. Soc. London, Ser. A
,
425
, pp.
215
244
.
14.
Weitsman
,
Y.
, and
Zhu
,
H.
,
1993
, “
Multi-fracture of Ceramic Composites
,”
J. Mech. Phys. Solids
,
41
, No.
2
, pp.
351
388
.
15.
Kachanov, M., 1980, “Continuum Model of Medium With Cracks,” J. Eng. Mech., pp. 1089–1051.
16.
Mauge
,
C.
, and
Kachanov
,
M.
,
1994
, “
Effective Elastic Properties of an Anisotropic Material With Arbitrarily Oriented Interacting Cracks
,”
J. Mech. Phys. Solids
,
42
, No.
4
, pp.
561
584
.
17.
Talreja
,
R.
,
1989
, “
Damage Development in Composites: Mechanisms and Modelling
,”
J. Strain Anal.
,
24
, No.
4
, pp.
215
222
.
18.
Christensen, R. M., 1979, Mechanics of Composite Materials. John Wiley and Sons, New York.
19.
Timoshenko and Goodier, 1970, Theory of Elasticity, 3rd. Ed., McGraw-Hill, New York.
20.
Prewo
,
K. M.
, and
Brennan
,
J. J.
,
1980
, “
High-Strength Silicon Carbide Fiber-Reinforced Glass-Matrix Composites
,”
J. Mater. Sci.
,
15
, pp.
463
468
.
21.
Prewo
,
K. M.
, and
Brennan
,
J. J.
,
1982
, “
Silicon Carbide Yarn Reinforced Glass Matrix Composites
,”
J. Mater. Sci.
,
17
, pp.
1201
1206
.
22.
Prewo
,
K. M.
,
1986
, “
Tension and Flexural Strength of Silicon Carbide Fibre-Reinforced Glass Ceramics
,”
J. Mater. Sci.
,
21
, pp.
3590
3600
.
23.
Prewo
,
K. M.
,
1987
, “
Fatigue and Stress Rupture of Silicon Carbide Fibre-Reinforced Glass-Ceramics
,”
J. Mater. Sci.
,
22
, pp.
2695
2701
.
24.
Prewo
,
K. M.
,
Johnson
,
B.
, and
Starrett
,
S.
,
1989
, “
Silicon Carbide Fiber-Reinforced Glass-Ceramic Composite Tensile Behaviour at Elevated Temperature
,”
J. Mater. Sci.
,
24
, pp.
1373
1379
.
25.
Marshall
,
D. B.
, and
Evans
,
A. G.
,
1985
, “
Failure Mechanisms in Ceramic-Fiber/Ceramic Matrix Composites
,”
J. Am. Ceram. Soc.
,
68
, No.
5
, pp.
225
231
.
26.
Wooh, S. C., and Daniel, I. M., 1992, “Real-Time Ultrasonic Investigation of Damage Development in Ceramic-Matrix Composite,” Review of Progress in Quantitative Nondestructive Evaluation, Vol. 11, D. O. Thompson and D. E. Chimenti, eds., Plenum Press, New York, pp. 1523–1530.
27.
Luo, J.-J., Wooh, S.-C., and Daniel, I. M., 1994, “Acoustic Emission Study of Failure Mechanisms in Ceramic Matrix Composite Under Longitudinal Tensile Loading,” Review of Progress in Quantitative Nondestructive Evaluation, Vol. 13, D. O. Thompson and D. E. Chimenti, eds., Plenum Press, New York, pp. 469–476.
28.
Mall
,
S.
, and
Kim
,
R. Y.
,
1992
, “
Failure Mechanisms in Laminates of Silicon Carbide/Calcium-Aluminosilicate Ceramic Composite
,”
Composites
,
23
, No.
4
, pp.
215
222
.
29.
Larsen, D. C., 1992, Corning Glass Works, private communication.
30.
Tsai
,
C.-L.
, and
Daniel
,
I. M.
,
1994
, “
Method for Thermo-Mechanical Characterization of Single Fibers
,”
Compos. Sci. Technol.
,
50
, pp.
7
12
.
31.
So̸rensen
,
B. F.
,
1993
, “
Effect of Fibre Roughness on the Overall Stress-Transverse Strain Response of Ceramic Composites
,”
Scr. Metall. Mater.
,
28
, pp.
435
439
.
You do not currently have access to this content.