Vibration Instability in a Large Motion Bistable Compliant Mechanism due to Stribeck Friction

[+] Author and Article Information
Alborz Niknam

Department of Mechanical Engineering and Energy Processes, Southern Illinois University Carbondale

Kambiz Farhang

Department of Mechanical Engineering and Energy Processes, Southern Illinois University Carbondale

1Corresponding author.

ASME doi:10.1115/1.4040513 History: Received April 16, 2018; Revised May 31, 2018


The present paper investigates friction-induced self-excited vibration of a bistable compliant mechanism. A pseudo-rigid-body representation of the mechanism is used containing a hardening nonlinear spring and a viscous damper. The mass is suspended from above with the spring-damper combination leading to the addition of geometric nonlinearity in the equation of motion and position- and velocity-dependent normal contact force. Friction input provided by a moving belt in contact with the mass. An exponentially decaying function of sliding velocity describes the friction coefficient and, thereby, incorporates Stribeck effect of friction. Eigenvalue analysis is employed to investigate the local stability of the steady-state fixed points. It is observed that the oscillator experiences pitchfork and Hopf bifurcations. The effects of the spring nonlinearity and pre-compression, viscous damping, belt velocity, and the applied normal force on the number, position, and stability of the equilibrium points are investigated. Global system behavior is studied by establishing trajectory maps of the system. Critical belt speed is derived analytically and shown to be only the result of Stribeck effect of friction. It is found that one equilibrium point dominates the steady-state response for very low damping and negligible spring nonlinearity. The presence of damping and/or spring nonlinearity tends to diminish this dominance.

Copyright (c) 2018 by ASME
Your Session has timed out. Please sign back in to continue.






Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In