0
Research Papers

New Active Online Balancing Method for Grinding Wheel Using Liquid Injection and Free Dripping

[+] Author and Article Information
Xining Zhang

State Key Laboratory for Manufacturing
System Engineering,
Xi'an Jiaotong University,
Xi'an 710049, China
e-mail: zhangxining@mail.xjtu.edu.cn

Xu Liu

State Key Laboratory for Manufacturing
System Engineering,
Xi'an Jiaotong University,
Xi'an 710049, China
e-mail: liuxu@stu.xjtu.edu.cn

Huan Zhao

State Key Laboratory for Manufacturing
System Engineering,
Xi'an Jiaotong University,
Xi'an 710049, China
e-mail: zhaohuan_xjtu@163.com

Contributed by the Technical Committee on Vibration and Sound of ASME for publication in the JOURNAL OF VIBRATION AND ACOUSTICS. Manuscript received April 11, 2017; final manuscript received August 30, 2017; published online December 12, 2017. Assoc. Editor: John Yu.

J. Vib. Acoust 140(3), 031001 (Dec 12, 2017) (12 pages) Paper No: VIB-17-1149; doi: 10.1115/1.4037955 History: Received April 11, 2017; Revised August 30, 2017

Grinding is a vital method in machining techniques and an effective way to process materials such as hardened steels and silicon wafers. However, as the running time increases, the unbalance of grinding wheels produce a severe vibration and noise of grinding machines because of the uneven shedding of abrasive particles and the uneven adsorption of coolant, which has a severe and direct impact on the accuracy and quality of parts. Online balancing is an important and necessary technique to reduce the unbalance causing by these factors and adjust the time-varying balance condition of the grinding wheel. A new active online balancing method using liquid injection and free dripping is proposed in this paper. The proposed online balancing method possesses a continuous balancing ability and the problem of losing balancing ability for the active online balancing method using liquid injection is solved effectively because some chambers are full of liquid. The residual liquid contained in the balancing chambers is utilized as a compensation mass for reducing rotor unbalance, where the rotor phase is proposed herein as a target for determining the machine unbalance. A new balancing device with a controllable injection and free dripping structure is successfully designed. The relationship between the mass of liquid in the balancing chamber and the centrifugal force produced by liquid is identified. The performance of the proposed method is verified by the balancing experiments and the results of these experiments show that the vibration of unbalance response is reduced by 87.3% at 2700 r/min.

Copyright © 2018 by ASME
Your Session has timed out. Please sign back in to continue.

References

Li, H. N. , and Axinte, D. , 2016, “ Textured Grinding Wheels: A Review,” Int. J. Mach. Tools Manuf., 109, pp. 8–35. [CrossRef]
Liu, J. H. , Pei, Z. J. , and Fisher, G. R. , 2007, “ Grinding Wheels for Manufacturing of Silicon Wafers: A Literature Review,” Int. J. Mach. Tools Manuf., 47(1), pp. 1–13. [CrossRef]
Liao, Y. , Lang, G. , Wu, F. , and Qu, L. , 2009, “ An Improvement to Holospectrum Based Field Balancing Method by Reselection of Balancing Object,” ASME J. Vib. Acoust., 131(3), p. 031005. [CrossRef]
Liu, J. , and Ishida, Y. , 2009, “ Vibration Suppression of Rotating Machinery Utilizing an Automatic Ball Balancer and Discontinuous Spring Characteristics,” ASME J. Vib. Acoust., 131(4), p. 041004. [CrossRef]
Ishida, Y. , Matsuura, T. , and Zhang, X. L. , 2012, “ Efficiency Improvement of an Automatic Ball Balancer,” ASME J. Vib. Acoust., 134(2), p. 021012. [CrossRef]
Inoue, T. , Ishida, Y. , and Niimi, H. , 2012, “ Vibration Analysis of a Self-Excited Vibration in a Rotor System Caused by a Ball Balancer,” ASME J. Vib. Acoust., 134(2), p. 021006. [CrossRef]
Cho, J. , Jeong, H. , and Kong, K. , 2014, “ Analysis of Dynamic Model of a Top-Loading Laundry Machine With a Hydraulic Balancer,” Int. J. Precis. Eng. Manuf., 15(8), pp. 1615–1623. [CrossRef]
Chen, H. W. , Ji, W. X. , and Zhang, Q. J. , 2012, “ A Method for Vibration Isolation of a Vertical Axis Automatic Washing Machine With a Hydraulic Balancer,” J. Mech. Sci. Technol., 26(2), pp. 335–343. [CrossRef]
Horvath, R. , Flowers, G. T. , and Fausz, J. , 2008, “ Passive Balancing of Rotor Systems Using Pendulum Balancers,” ASME J. Vib. Acoust., 130(4), p. 041011. [CrossRef]
Mayr, J. , Spanlang, F. , and Gattringer, H. , 2015, “ Mechatronic Design of a Self-Balancing Three-Dimensional Inertia Wheel Pendulum,” Mechatronics, 30, pp. 1–10. [CrossRef]
Rizal, Y. , Syu, J. , and Ho, M. , 2014, “ Balance Control of an Inverted Pendulum System Using Second-Order Sliding Mode Control,” CACS International Automatic Control Conference (CACS), Kaohsiung, Taiwan, Nov. 26–28, pp. 191–196.
Zeng, S. , and Wang, X. X. , 1999, “ The Influence of the Electromagnetic Balancing Regulator on the Rotor System,” J. Sound Vib., 219(4), pp. 723–729. [CrossRef]
Spalek, D. , and Waleczek, K. , 2007, “ Power Balance for Electromagnetic Field for Electromechanical Converter With Spherical Anisotropic Rotor,” 30th International Conference on Fundamentals of Electrotechnics and Circuit Theory (IC-SPETO), Gliwice, Poland, May 23–26, pp. 29–30.
Ma, S. , Pei, S. , Wang, L. , and Xu, H. , 2012, “ A Novel Active Online Electromagnetic Balancing Method-Principle and Structure Analysis,” ASME J. Vib. Acoust., 134(3), p. 034503. [CrossRef]
Hredzak, B. , and Guo, G. X. , 2006, “ New Electromechanical Balancing Device for Active Imbalance Compensation,” J. Sound Vib., 294(4–5), pp. 737–751. [CrossRef]
Pan, X. , Wu, H. Q. , Gao, J. J. , and Wang, W. M. , 2015, “ New Liquid Transfer Active Balancing System Using Compressed Air for Grinding Machine,” ASME J. Vib. Acoust., 137(1), p. 011002. [CrossRef]
Dionys, H. , 1977, “ Apparatus for Compensating for Unbalance of a Rotary Body,” Gebr. Hofmann GmbH, Kronberg im Taunus, Germany, U.S. Patent No. 4050195. http://www.google.sr/patents/US4050195
Gao, J. , and Zhang, P. , 2006, “ Simulative Study of Automatic Balancing of Grinding Wheel Using a Continuously-Dripping Liquid-Injection Balancing Head,” Sixth World Congress on Intelligent Control and Automation (WCICA), Dalian, China, June 21–23, pp. 8002–8005.
Munson, B. R. , Young, D. F. , Okiishi, T. H. , and Huebsch, W. W. , 2009, Fundamentals of Fluid Mechanics, 6th ed., Don Fowley, Jefferson City, MO, pp. 441–444.
Andria, G. , Savino, M. , and Trotta, A. , 1989, “ Windows and Interpolation Algorithms to Improve Electrical Measurement Accuracy,” IEEE Trans. Instrum. Meas., 38(4), pp. 856–863. [CrossRef]
Santamaria-Caballero, I. , Pantaleon-Prieto, C. J. , Ibanez-Diaz, J. , and Gomez-Cosio, E. , 1998, “ Improved Procedures for Estimating Amplitudes and Phases of Harmonics With Application to Vibration Analysis,” IEEE Trans. Instrum. Meas., 47(1), pp. 209–214. [CrossRef]

Figures

Grahic Jump Location
Fig. 1

(a) Working principles of the liquid injection type balancing, (b) full chambers after balancing operations, and (c) working principles of the active balance method using liquid injection and free dripping

Grahic Jump Location
Fig. 2

Block diagram of the active balance using liquid injection and free dripping system

Grahic Jump Location
Fig. 3

(a) Connection between the injection pipe and the water tank, (b) structure of the injection pipe, and (c) main structure of the water tank

Grahic Jump Location
Fig. 4

Structure of the dripping valve

Grahic Jump Location
Fig. 5

Flowchart of the shooting method

Grahic Jump Location
Fig. 6

Solution of the liquid element

Grahic Jump Location
Fig. 7

Relationship between the centrifugal force and the radius of the liquid level in the chamber

Grahic Jump Location
Fig. 8

Relationship between the mass of the liquid and the radius of the liquid level in the chamber

Grahic Jump Location
Fig. 9

Flowchart of the first section

Grahic Jump Location
Fig. 10

Flowchart of the second section

Grahic Jump Location
Fig. 11

Procedures of the maintenance for balance: (a) liquid in the chamber before the first injection, (b) liquid after the first injection, (c) liquid after the second injection, and (d) change of the unbalance after two injection

Grahic Jump Location
Fig. 12

Result of the simulation 1: (a) the mass of unbalance and (b) the angle of unbalance (m1 = 0.5 g and m2 = 1 g)

Grahic Jump Location
Fig. 13

Result of the simulation 2: (a) the mass of unbalance and (b) the angle of unbalance (m1 = 0.2 g and m2 = 0.5 g)

Grahic Jump Location
Fig. 14

Experimental system

Grahic Jump Location
Fig. 15

Structure sketch of the test rig

Grahic Jump Location
Fig. 16

Result of the experiment 1: (a) the amplitude of vibration and (b) the angle of vibration (m1 = 2 g and m2 = 4 g)

Grahic Jump Location
Fig. 17

Result of the experiment 2: (a) the amplitude of vibration and (b) the angle of vibration (m1 = 0.5 g and m2 = 1.5 g)

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In