0
Research Papers

Acoustic Metamaterial With Fractal Coiling Up Space for Sound Blocking in a Deep Subwavelength Scale

[+] Author and Article Information
Baizhan Xia, Liping Li, Dejie Yu

State Key Laboratory of Advanced Design
and Manufacturing for Vehicle Body,
Hunan University,
Changsha 410082, Hunan, China

Jian Liu

State Key Laboratory of Advanced Design
and Manufacturing for Vehicle Body,
Hunan University,
Changsha 410082, Hunan, China
e-mail: liujian@hnu.edu.cn

Contributed by the Noise Control and Acoustics Division of ASME for publication in the JOURNAL OF VIBRATION AND ACOUSTICS. Manuscript received August 25, 2016; final manuscript received July 27, 2017; published online September 25, 2017. Assoc. Editor: Mahmoud Hussein.

J. Vib. Acoust 140(1), 011011 (Sep 25, 2017) (8 pages) Paper No: VIB-16-1421; doi: 10.1115/1.4037514 History: Received August 25, 2016; Revised July 27, 2017

Inspired by fractal photonic/phononic crystals, the self-similar fractal technique is applied to design acoustic metamaterial. By replacing the straight channel of coiling up space with a smaller coiling up space, a class of topological architectures with fractal coiling up space is developed. The significant effect of the fractal-inspired hierarchy on the band structure with fractal coiling up space is systematically investigated. Furthermore, sound wave propagation in the acoustic metamaterial with the fractal coiling up space is comprehensively highlighted. Our results show that the acoustic metamaterial with higher-order fractal coiling up space exhibits deep subwavelength bandgaps, in which the sound propagation will be well blocked. Thus, this work provides insights into the role of the fractal hierarchy in regulating the dynamic behavior of the acoustic metamaterial and provides opportunities for the design of a robust filtering device in a subwavelength scale.

FIGURES IN THIS ARTICLE
<>
Copyright © 2018 by ASME
Your Session has timed out. Please sign back in to continue.

References

Yang, S. , Page, J. H. , Liu, Z. , Cowan, M. L. , Chan, C. T. , and Sheng, P. , 2002, “ Ultrasound Tunneling Through 3D Phononic Crystals,” Phys. Rev. Lett., 88(10), p. 104301. [CrossRef] [PubMed]
Ke, M. , Liu, Z. , Qiu, C. , Wang, W. , Shi, J. , Wen, W. , and Sheng, P. , 2005, “ Negative-Refraction Imaging With Two-Dimensional Phononic Crystals,” Phys. Rev. B, 72(6), p. 064306. [CrossRef]
Bertoldi, K. , and Boyce, M. C. , 2008, “ Wave Propagation and Instabilities in Monolithic and Periodically Structured Elastomeric Materials Under Going Large Deformations,” Phys. Rev. B, 78(18), p. 184107. [CrossRef]
Liu, C. , Hu, S. , and Shen, S. , 2014, “ Effect of Flexoelectricity on Band Structures of One-Dimensional Phononic Crystals,” ASME J. Appl. Mech., 81(5), p. 051007. [CrossRef]
Wang, Y. F. , and Wang, Y. S. , 2013, “ Multiple Wide Complete Bandgaps of Two-Dimensional Phononic Crystal Slabs With Cross-Like Holes,” J. Sound Vib., 332(8), pp. 2019–2037. [CrossRef]
Aravantinos-Zafiris, N. , and Sigalas, M. M. , 2013, “ Band Gaps in Three-Dimensional Layer-by-Layer Phononic Crystal,” ASME J. Vib. Acoust., 135(4), p. 041003. [CrossRef]
Acar, G. , and Yilmaz, C. , 2013, “ Experimental and Numerical Evidence for the Existence of Wide and Deep Phononic Gaps Induced by Inertial Amplification in Two-Dimensional Solid Structures,” J. Sound Vib., 332(24), pp. 6389–6404. [CrossRef]
Kim, E. , and Yang, J. , 2014, “ Wave Propagation in Single Column Woodpile Phononic Crystals: Formation of Tunable Band Gaps,” J. Mech. Phys. Solids, 71, pp. 33–45. [CrossRef]
Xie, L. , Xia, B. , Liu, J. , Huang, G. , and Lei, J. , 2017, “ An Improved Fast Plane Wave Expansion Method for Topology Optimization of Phononic Crystals,” Int. J. Mech. Sci., 120, pp. 171–181. [CrossRef]
Liu, Z. , Zhang, X. , Mao, Y. , Zhu, Y. Y. , Yang, Z. , Chan, C. T. , and Sheng, P. , 2000, “ Locally Resonant Sonic Materials,” Science, 289(5485), pp. 1734–1736. [CrossRef] [PubMed]
Goffaux, C. , Sánchez-Dehesa, J. , Yeyati, A. L. , Lambin, P. , Khelif, A. , Vasseur, J. O. , and Djafari-Rouhani, B. , 2002, “ Evidence of Fano-Like Interference Phenomena in Locally Resonant Materials,” Phys. Rev. Lett., 88(22), p. 225502. [CrossRef] [PubMed]
Liu, Z. , Chan, C. T. , and Sheng, P. , 2005, “ Analytic Model of Phononic Crystals With Local Resonances,” Phys. Rev. B, 71(1), p. 014103. [CrossRef]
Ding, Y. , Liu, Z. , Qiu, C. , and Shi, J. , 2007, “ Metamaterial With Simultaneously Negative Bulk Modulus and Mass Density,” Phys. Rev. Lett., 99(9), p. 093904. [CrossRef] [PubMed]
Huang, G. L. , and Sun, C. T. , 2010, “ Band Gaps in a Multiresonator Acoustic Metamaterial,” ASME J. Vib. Acoust., 132(3), p. 031003. [CrossRef]
Wu, Y. , Lai, Y. , and Zhang, Z. Q. , 2011, “ Elastic Metamaterials With Simultaneously Negative Effective Shear Modulus and Mass Density,” Phys. Rev. Lett., 107(10), p. 105506. [CrossRef] [PubMed]
Fang, N. , Xi, D. , Xu, J. , Ambati, M. , Srituravanich, W. , Sun, C. , and Zhang, X. , 2006, “ Ultrasonic Metamaterials With Negative Modulus,” Nat. Mater., 5(6), pp. 452–456. [CrossRef] [PubMed]
Hu, X. , Ho, K. M. , Chan, C. T. , and Zi, J. , 2008, “ Homogenization of Acoustic Metamaterials of Helmholtz Resonators in Fluid,” Phys. Rev. B, 77(17), p. 172301. [CrossRef]
Cheng, Y. , Xu, J. Y. , and Liu, X. J. , 2008, “ One-Dimensional Structured Ultrasonic Metamaterials With Simultaneously Negative Dynamic Density and Modulus,” Phys. Rev. B, 77(4), p. 045134. [CrossRef]
Wang, Z. G. , Lee, S. H. , Kim, C. K. , Park, C. M. , Nahm, K. , and Nikitov, S. , 2008, “ Acoustic Wave Propagation in One-Dimensional Phononic Crystals Containing Helmholtz Resonators,” J. Appl. Phys., 103(6), p. 064907. [CrossRef]
Ding, C. , Hao, L. , and Zhao, X. , 2010, “ Two-Dimensional Acoustic Metamaterial With Negative Modulus,” J. Appl. Phys., 108(7), p. 074911. [CrossRef]
García-Chocano, V. M. , Graciá-Salgado, R. , Torrent, D. , Cervera, F. , and Sánchez-Dehesa, J. , 2012, “ Quasi-Two-Dimensional Acoustic Metamaterial With Negative Bulkmodulus,” Phys. Rev. B, 85(18), p. 184102. [CrossRef]
Park, C. M. , and Lee, S. H. , 2013, “ Propagation of Acoustic Waves in a Metamaterial With a Refractive Index of Near Zero,” Appl. Phys. Lett., 102(24), p. 241906. [CrossRef]
Hao, L. M. , Ding, C. L. , and Zhao, X. P. , 2013, “ Design of a Passive Controllable Negative Modulus Metamaterial With a Split Hollow Sphere of Multiple Holes,” ASME J. Vib. Acoust., 135(4), p. 041008. [CrossRef]
Xia, B. , Chen, N. , Xie, L. , Qin, Y. , and Yu, D. , 2016, “ Temperature-Controlled Tunable Acoustic Metamaterial With Active Band Gap and Negative Bulk Modulus,” Appl. Acoust., 112, pp. 1–9. [CrossRef]
Xia, B. , Dai, H. , and Yu, D. , 2016, “ Symmetry-Broken Metamaterial For Blocking, Cloaking, and Supertunneling of Sound in a Subwavelength Scale,” Appl. Phys. Lett., 108(25), p. 251902. [CrossRef]
Dai, H. , Liu, T. , Xia, B. , and Yu, D. , 2017, “ Acoustic Quasi-Lossless Transmission in Arbitrary Pathway of Network,” Phys. Rev. B, 95(5), p. 054109. [CrossRef]
Bradley, C. E. , 1994, “ Time Harmonic Acoustic Bloch Wave Propagation in Periodic Waveguides—Part I: Theory,” J. Acoust. Soc. Am., 96(3), pp. 1854–1862. [CrossRef]
Sugimoto, N. , and Horioka, T. , 1995, “ Dispersion Characteristics of Sound Waves in a Tunnel With an Array of Helmholtz Resonators,” J. Acoust. Soc. Am., 97(3), pp. 1446–1459. [CrossRef]
Yang, Z. , Mei, J. , Yang, M. , Chan, N. H. , and Sheng, P. , 2008, “ Membrane-Type Acoustic Metamaterial With Negative Dynamic Mass,” Phys. Rev. Lett., 101(20), p. 204301. [CrossRef] [PubMed]
Lee, S. H. , Park, C. M. , Seo, Y. M. , Wang, Z. G. , and Kim, C. K. , 2009, “ Acoustic Metamaterial With Negative Density,” Phys. Lett. A, 373(48), pp. 4464–4469. [CrossRef]
Park, C. M. , Park, J. J. , Lee, S. H. , Seo, Y. M. , Kim, C. K. , and Lee, S. H. , 2011, “ Amplification of Acoustic Evanescent Waves Using Metamaterial Slabs,” Phys. Rev. Lett., 107(19), p. 194301. [CrossRef] [PubMed]
Langfeldt, F. , Riecken, J. , Gleine, W. , and von Estorff, O. , 2016, “ A Membrane-Type Acoustic Metamaterial With Adjustable Acoustic Properties,” J. Sound Vib., 373, pp. 1–18. [CrossRef]
Langfeldt, F. , Gleine, W. , and von Estorff, O. , 2015, “ Analytical Model for Low-Frequency Transmission Loss Calculation of Membranes Loaded With Arbitrarily Shaped Masses,” J. Sound Vib., 349, pp. 315–329. [CrossRef]
Naify, C. J. , Chang, C. M. , McKnight, G. , and Nutt, S. , 2010, “ Transmission Loss and Dynamic Response of Membrane-Type Locally Resonant Acoustic Metamaterials,” J. Sound Vib., 108(11), p. 114905.
Zhang, Y. , Wen, J. , Xiao, Y. , Wen, X. , and Wang, J. , 2012, “ Theoretical Investigation of the Sound Attenuation of Membrane-Type Acoustic Metamaterials,” Phys. Lett. A, 376(17), pp. 1489–1494. [CrossRef]
Chen, Y. , Huang, G. , Zhou, X. , Hu, G. , and Sun, C. T. , 2014, “ Analytical Coupled Vibroacoustic Modeling of Membrane-Type Acoustic Metamaterials: Membrane Model,” J. Acoust. Soc. Am., 136(3), pp. 969–979. [CrossRef] [PubMed]
Naify, C. J. , Chang, C. M. , McKnight, G. , and Nutt, S. , 2011, “ Transmission Loss of Membrane-Type Acoustic Metamaterials With Coaxial Ring Masses,” J. Appl. Phys., 110(12), p. 124903. [CrossRef]
Tian, H. , Wang, X. , and Zhou, Y. H. , 2014, “ Theoretical Model and Analytical Approach for a Circular Membrane-Ring Structure of Locally Resonant Acoustic Metamaterial,” Appl. Phys. A, 114(3), pp. 985–990. [CrossRef]
Romerogarcía, V. , Theocharis, G. , Richoux, O. , Merkel, A. , Tournat, V. , and Pagneux, V. , 2016, “ Perfect and Broadband Acoustic Absorption by Critically Coupled Sub-Wavelength Resonators,” Sci. Rep., 6, p. 19519. [CrossRef] [PubMed]
Mei, J. , Ma, G. , Yang, M. , Yang, Z. , Wen, W. , and Sheng, P. , 2012, “ Dark Acoustic Metamaterials as Super Absorbers for Low-Frequency Sound,” Nat. Commun., 3, p. 756. [CrossRef] [PubMed]
Yang, Z. , Dai, H. M. , Chan, N. H. , Ma, G. C. , and Sheng, P. , 2010, “ Acoustic Metamaterial Panels for Sound Attenuation in the 50–1000 Hz Regime,” Appl. Phys. Lett., 96(4), p. 041906. [CrossRef]
Assouar, M. B. , Senesi, M. , Oudich, M. , Ruzzene, M. , and Hou, Z. , 2012, “ Broadband Plate-Type Acoustic Metamaterial for Low-Frequency Sound Attenuation,” Appl. Phys. Lett., 101(17), p. 173505. [CrossRef]
Liang, Z. , and Li, J. , 2012, “ Extreme Acoustic Metamaterial by Coiling Up Space,” Phys. Rev. Lett., 108(11), p. 114301. [CrossRef] [PubMed]
Frenzel, T. , Brehm, J. D. , Bückmann, T. , Schittny, R. , Kadic, M. , and Wegener, M. , 2013, “ Three-Dimensional Labyrinthine Acoustic Metamaterials,” Appl. Phys. Lett., 103(6), p. 061907. [CrossRef]
Li, Y. , Liang, B. , Zou, X. Y. , and Cheng, J. C. , 2013, “ Extraordinary Acoustic Transmission Through Ultrathin Acoustic Metamaterials by Coiling up Space,” Appl. Phys. Lett., 103(6), p. 063509. [CrossRef]
Xie, Y. , Konneker, A. , Popa, B. I. , and Cummer, S. A. , 2013, “ Tapered Labyrinthine Acoustic Metamaterials for Broadband Impedance Matching,” Appl. Phys. Lett., 103(20), p. 201906. [CrossRef]
Xie, Y. , Popa, B. I. , Zigoneanu, L. , and Cummer, S. A. , 2013, “ Measurement of a Broadband Negative Index With Space-Coiling Acoustic Metamaterials,” Phys. Rev. Lett., 110(17), p. 175501. [CrossRef] [PubMed]
Li, Y. , Jiang, X. , Li, R. Q. , Liang, B. , Zou, X. Y. , Yin, L. L. , and Cheng, J. C. , 2014, “ Experimental Realization of Full Control of Reflected Waves With Subwavelength Acoustic Metasurfaces,” Phys. Rev. Appl., 2(6), p. 064002. [CrossRef]
Li, Y. , and Assouar, B. M. , 2016, “ Acoustic Metasurface-Based Perfect Absorber With Deep Subwavelength Thickness,” Appl. Phys. Lett., 108(6), p. 063502. [CrossRef]
Cheng, Y. , Zhou, C. , Yuan, B. G. , Wu, D. J. , Wei, Q. , and Liu, X. J. , 2015, “ Ultra-Sparse Metasurface for High Reflection of Low-Frequency Sound Based on Artificial Mie Resonances,” Nat. Mater., 14(10), pp. 1013–1019. [CrossRef] [PubMed]
Jiang, X. , Zhao, J. , Liu, S. L. , Liang, B. , Zou, X. Y. , Yang, J. , and Cheng, J. C. , 2016, “ Broadband and Stable Acoustic Vortex Emitter With Multi-Arm Coiling Slits,” Appl. Phys. Lett., 108(20), p. 203501. [CrossRef]
Zhu, X. , Li, K. , Zhang, P. , Zhu, J. , Zhang, J. , Tian, C. , and Liu, S. , 2016, “ Implementation of Dispersion-Free Slow Acoustic Wave Propagation and Phase Engineering With Helical-Structured Metamaterials,” Nat. Commun., 7, p. 11731. [CrossRef] [PubMed]
Xie, Y. , Wang, W. , Chen, H. , Konneker, A. , Popa, B. I. , and Cummer, S. A. , 2014, “ Wavefront Modulation and Subwavelength Diffractive Acoustics With an Acoustic Metasurface,” Nat. Commun., 5, p. 5553. [CrossRef] [PubMed]
Qwamizadeh, M. , Zhang, Z. , Zhou, K. , and Zhang, Y. W. , 2015, “ On the Relationship Between the Dynamic Behavior and Nanoscale Staggered Structure of the Bone,” J. Mech. Phys. Solids, 78, pp. 17–31. [CrossRef]
Qwamizadeh, M. , Liu, P. , Zhang, Z. , Zhou, K. , and Zhang, Y. W. , 2016, “ Hierarchical Structure Enhances and Tunes the Damping Behavior of Load-Bearing Biological Materials,” ASME J. Appl. Mech., 83(5), p. 051009. [CrossRef]
Epstein, M. , and Adeeb, S. M. , 2008, “ The Stiffness of Self-Similar Fractals,” Int. J. Solids Struct., 45(11), pp. 3238–3254. [CrossRef]
Ajdari, A. , Jahromi, B. H. , Papadopoulos, J. , Nayeb-Hashemi, H. , and Vaziri, A. , 2012, “ Hierarchical Honeycombs With Tailorable Properties,” Int. J. Solids Struct., 49(11), pp. 1413–1419. [CrossRef]
Zhang, Y. , Fu, H. , Su, Y. , Xu, S. , Cheng, H. , Fan, J. A. , Hwang, K. C. , Rogers, J. A. , and Huang, Y. , 2013, “ Mechanics of Ultra-Stretchable Self-Similar Serpentine Interconnects,” Acta Mater., 61(20), pp. 7816–7827. [CrossRef]
Zhang, Y. , Fu, H. , Xu, S. , Fan, J. A. , Hwang, K. C. , Jiang, J. , Rogers, J. A. , and Huang, Y. , 2014, “ A Hierarchical Computational Model for Stretchable Interconnects With Fractal-Inspired Designs,” J. Mech. Phys. Solids, 72, pp. 115–130. [CrossRef]
Rayneau-Kirkhope, D. , Mao, Y. , and Farr, R. , 2012, “ Ultralight Fractal Structures From Hollow Tubes,” Phys. Rev. Lett., 109(20), p. 204301. [CrossRef] [PubMed]
Castagnetti, D. , 2015, “ Comparison Between a Wideband Fractal-Inspired and a Traditional Multicantilever Piezoelectric Energy Converter,” ASME J. Vib. Acoust., 137(1), p. 011001. [CrossRef]
Oftadeh, R. , Haghpanah, B. , Vella, D. , Boudaoud, A. , and Vaziri, A. , 2014, “ Optimal Fractal-Like Hierarchical Honeycombs,” Phys. Rev. Lett., 113(10), p. 104301. [CrossRef] [PubMed]
Sun, F. , Lai, C. , and Fan, H. , 2016, “ In-Plane Compression and Behavior and Energy Absorption of Hierarchical Triangular Lattice Structures,” Mater. Des., 100, pp. 280–290. [CrossRef]
Cui, Z. , Ke, X. , Li, E. , and Liu, T. , 2016, “ Electronic and Optical Properties of Titanium-Doped GaN Nanowires,” Mater. Des., 96, pp. 409–415. [CrossRef]
Wen, W. , Zhou, L. , Li, J. , Ge, W. , Chan, C. T. , and Sheng, P. , 2002, “ Subwavelength Photonic Band Gaps From Planar Fractals,” Phys. Rev. Lett., 89(22), p. 223901. [CrossRef] [PubMed]
Chen, D. , Wang, S. , Li, L. , Liu, Z. , Zhao, X. Z. , Zhang, M. , and Chen, Z. , 2006, “ Microstrip Filter With H-Shaped Fractal,” Appl. Phys. Lett., 88(25), p. 253507. [CrossRef]
Miyamaru, F. , Saito, Y. , Takeda, M. W. , Hou, B. , Liu, L. , Wen, W. , and Sheng, P. , 2008, “ Terahertz Electric Response of Fractal Metamaterial Structures,” Phys. Rev. B, 77(4), p. 045124. [CrossRef]
Hou, B. , Xie, H. , Wen, W. , and Sheng, P. , 2008, “ Three-Dimensional Metallic Fractals and Their Photonic Crystal Characteristics,” Phys. Rev. B, 77(12), p. 125113. [CrossRef]
Dupré, M. , Lemoult, F. , Fink, M. , and Lerosey, G. , 2016, “ Exploiting Spatiotemporal Degrees of Freedom for Far-Field Subwavelength Focusing Using Time Reversal in Fractals,” Phys. Rev. B, 93(18), p. 180201. [CrossRef]
Kuo, N. K. , and Piazza, G. , 2011, “ Fractal Phononic Crystals in Aluminum Nitride: An Approach to Ultra High Frequency Bandgaps,” Appl. Phys. Lett., 99(16), p. 163501. [CrossRef]
Liu, X. , Fan, Y. , and An, Y. , 2013, “ The Influence of T-Square Fractal Shape Holes on the Band Structure of Two-Dimensional Phononic Crystals,” Phys. Rev. B: Condens. Matter, 429, pp. 73–78. [CrossRef]
Lim, Q. J. , Wang, P. , Koh, S. J. A. , Khoo, E. H. , and Bertoldi, K. , 2015, “ Wave Propagation in Fractal-Inspired Self-Similar Beam Lattices,” Appl. Phys. Lett., 107(22), p. 221911. [CrossRef]
Chen, Y. , and Wang, L. , 2014, “ Tunable Band Gaps in Bio-Inspired Periodic Composites With Nacre-Like Microstructure,” J. Appl. Phys., 116(6), p. 063506. [CrossRef]
Chen, Y. , and Wang, L. , 2015, “ Multiband Wave Filtering and Waveguiding in Bio-Inspired Hierarchical Composites,” Extreme Mech. Lett., 5, pp. 18–24. [CrossRef]
Zhang, P. , and To, A. C. , 2013, “ Broadband Wave Filtering of Bioinspired Hierarchical Phononic Crystal,” Appl. Phys. Lett., 102(12), p. 121910. [CrossRef]
Mousanezhad, D. , Babaee, S. , Ghosh, R. , Mahdi, E. , Bertoldi, K. , and Vaziri, A. , 2015, “ Honeycomb Phononic Crystals With Self-Similar Hierarchy,” Phys. Rev. B, 92(10), p. 104304. [CrossRef]
Zwikker, C. , and Kosten, C. W. , 1949, “ Sound Absorbing Materials,” J. Acoust. Soc. Am., 94(5), p. 3037.
Stinson, M. R. , 1991, “ The Propagation of Plane Sound Waves in Narrow and Wide Circular Tubes, and Generalization to Uniform Tubes of Arbitrary Cross-Sectional Shape,” J. Acoust. Soc. Am., 89(2), pp. 550–558. [CrossRef]

Figures

Grahic Jump Location
Fig. 2

(a) The square lattice. The regular hexagons (the shaded area) represent acoustic metamaterials. The unit cell and the basis vector of the square lattice are marked by square. (b) The Brillouin zone is marked by the shaded area.

Grahic Jump Location
Fig. 1

Schematic cross-sectional illustrations of three types of acoustic metamaterials with coiling up spaces: (a) acoustic metamaterial with the first-order coiling up space, (b) acoustic metamaterial with the second-order coiling up space, and (c) acoustic metamaterial with the third-order coiling up space

Grahic Jump Location
Fig. 9

(a) Transmission loss of an array composed of 3 × 3 the second-order acoustic metamaterials. (b)–(d) Sound pressure field distributions at 330 Hz, 585 Hz, and 925 Hz.

Grahic Jump Location
Fig. 10

(a) Transmission loss of an array composed of 3 × 3 the third-order acoustic metamaterials. (b)–(e) Sound pressure field distributions at 230 Hz, 460 Hz, 655 Hz, and 865 Hz.

Grahic Jump Location
Fig. 3

Band structures of acoustic metamaterials with coiling up spaces in the frequency range [0 Hz, 1000 Hz]: (a) band structure of the first-order acoustic metamaterial, (b) band structure of the second-order acoustic metamaterial, and (c) band structure of the third-order acoustic metamaterial

Grahic Jump Location
Fig. 4

Schematic diagram of physical field settings

Grahic Jump Location
Fig. 5

(a) Transmission coefficient of the first-order acoustic metamaterial. (b) The directional bandgaps of the first-order acoustic metamaterial along with Γ–X. (c) and (d) Sound pressure field distributions at 610 Hz and 885 Hz.

Grahic Jump Location
Fig. 6

(a) Transmission coefficient of the second-order acoustic metamaterial. (b) The directional bandgaps of the second-order acoustic metamaterial along with Γ–X. (c)–(e) Sound pressure field distributions at 330 Hz, 575 Hz, and 915 Hz.

Grahic Jump Location
Fig. 7

(a) Transmission coefficient of the third-order acoustic metamaterial. (b) The directional bandgaps of the third-order acoustic metamaterial along with Γ–X. (c)–(f) Sound pressure field distributions at 230 Hz, 460 Hz, 650 Hz, and 865 Hz.

Grahic Jump Location
Fig. 8

(a) Transmission coefficient of an array composed of 3 × 3 the first-order acoustic metamaterials. (b) and (c) Sound pressure field distributions at 610 Hz and 880 Hz.

Tables

Errata

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In