0
Research Papers

Passive Control of Piston Secondary Motion Using Nonlinear Energy Absorbers

[+] Author and Article Information
N. Dolatabadi

Wolfson School of Mechanical,
Electrical and Manufacturing Engineering,
Loughborough University,
Leicestershire LE11 3TU, UK
e-mail: N.Dolatabadi@lboro.ac.uk

S. Theodossiades

Professor
Wolfson School of Mechanical, Electrical
and Manufacturing Engineering,
Loughborough University,
Leicestershire LE11 3TU, UK
e-mail: S.Theodossiades@lboro.ac.uk

S. J. Rothberg

Professor
Wolfson School of Mechanical, Electrical
and Manufacturing Engineering,
Loughborough University,
Leicestershire LE11 3TU, UK
e-mail: S.J.Rothberg@lboro.ac.uk

Contributed by the Technical Committee on Vibration and Sound of ASME for publication in the JOURNAL OF VIBRATION AND ACOUSTICS. Manuscript received September 19, 2016; final manuscript received March 27, 2017; published online June 28, 2017. Assoc. Editor: Jeffrey F. Rhoads.

J. Vib. Acoust 139(5), 051009 (Jun 28, 2017) (12 pages) Paper No: VIB-16-1462; doi: 10.1115/1.4036468 History: Received September 19, 2016; Revised March 27, 2017

The impulsive behavior of the piston in the cylinder liner plays a key role in the noise, vibration, and harshness (NVH) of internal combustion engines. There have been several studies on the identification and quantification of piston impact action under various operation conditions. In the current study, the dynamics of the piston secondary motion are initially explored in order to describe the aggressive oscillations, energy loss, and noise generation. The control of piston secondary motion (and thus, impacts) is investigated using a new passive approach based on energy transfer of the highly transient oscillations to a nonlinear absorber. The effectiveness of this new method for improving the piston impact behavior is discussed using a preliminary parametric study that leads to the conceptual design of a nonlinear energy absorber.

Copyright © 2017 by ASME
Topics: Pistons , Engines
Your Session has timed out. Please sign back in to continue.

References

Harmel, P., 2014, “ Regulation (EU) No. 540/2014 of the European Parliament and of the Council of 16 April 2014 on the Sound Level of Motor Vehicles and of Replacement Silencing Systems, and Amending Directive 2007/46/EC and Repealing Directive 70/157/EEC Text With EEA Relevance,” OJ L 158, pp. 131–195.
Rahnejat, H. , 2000, “ Multi-Body Dynamics: Historical Evolution and Application,” Proc. Inst. Mech. Eng.: Part C, 214(1), pp. 149–173. [CrossRef]
Gupta, S. , 2002, “ Elasto-Multi-Body Dynamics of Internal Combustion Engines With Thin Shell Elastohydrodynamic Journal Bearings,” Ph.D. thesis, Loughborough University, Loughborough, UK.
Rahnejat, H. , 2010, Tribology and Dynamics of Engine and Powertrain: Fundamentals, Applications and Future Trends, Woodhead Publishing Ltd., Cambridge, UK, Chap. 10.
Kanda, H. , Okubo, M. , and Yonezawa, T. , 1990, “ Analysis of Noise Sources and Their Transfer Paths in Diesel Engines,” SAE Paper No. 900014.
Chen, L. , and Mehregany, M. , 2008, “ A Silicon Carbide Capacitive Pressure Sensor for In-Cylinder Pressure Measurement,” Sens. Actuators, A, 145–146, pp. 2–8. [CrossRef]
Litak, G. , Taccani, R. , Radu, R. , Urbanowicz, K. , Holyst, J. A. , Wendeker, M. , and Giadrossi, A. , 2005, “ Estimation of a Noise Level Using Coarse-Grained Entropy of Experimental Time Series of Internal Pressure in a Combustion Engine,” Chaos, Solitons Fractals, 23(5), pp. 1695–1701. [CrossRef]
Ungar, E. E. , and Ross, D. , 1965, “ Vibration and Noise Due to Piston-Slap in Reciprocating Machinery,” J. Sound Vib., 2(2), pp. 132–146. [CrossRef]
Haddad, S. D. , and Howard, D. A. , 1980, “ Analysis of Piston Slap-Induced Noise and Assessment of Some Methods of Control in Diesel Engine,” SAE Paper No. 800517.
Haddad, S. D. , and Fortescue, P. W. , 1977, “ Simulating Piston Slap by an Analogue Computer,” J. Sound Vib., 52(1), pp. 79–93. [CrossRef]
Lalor, N. , Grover, E. C. , and Priede, T. , 1980, “ Engine Noise Due to Mechanical Impacts at Pistons and Bearings,” SAE Paper No. 800402.
Nakada, T. , Yamamoto, A. , and Abe, T. , 1997, “ A Numerical Approach for Piston Secondary Motion Analysis and Its Application to the Piston Related Noise,” SAE Paper No. 972043.
Cho, S. H. , Ahn, S. T. , and Kim, Y. H. , 2002, “ A Simple Model to Estimate the Impact Force Induced by Piston Slap,” J. Sound Vib., 255(2), pp. 229–242. [CrossRef]
Ohta, K. , Amano, K. , Hayashida, A. , Zheng, G. , and Honda, I. , 2011, “ Analysis of Piston Slap Induced Noise and Vibration of Internal Combustion Engine (Effect of Piston Profile and Pin Offset),” J. Environ. Eng., 6(4), pp. 765–777. [CrossRef]
Geng, Z. , and Chen, J. , 2005, “ Investigation Into Piston-Slap Induced Vibration for Engine Condition Simulation and Monitoring,” J. Sound Vib., 282(3–5), pp. 735–751. [CrossRef]
Gerges, S. N. Y. , De Luca, J. C. , and Lalor, N. , 2002, “ The Influence of Cylinder Lubrication on Piston Slap,” J. Sound Vib., 257(3), pp. 527–557. [CrossRef]
Zhu, D. , Cheng, H. S. , Arai, T. , and Hamai, K. , 1992, “ A Numerical Analysis for Piston Skirts in Mixed Lubrication—Part I: Basic Modelling,” ASME J. Tribol., 114(3), pp. 553–562. [CrossRef]
D'Agostino, V. , Guida, D. , Ruggiero, A. , and Russo, A. , 2006, “ Optimized EHL Piston Dynamics Computer Code,” Fifth International Tribology Conference, AITC-AIT, Parma, Italy, Sept. 20–22. https://www.researchgate.net/publication/267788567_OPTIMIZED_EHL_PISTON_DYNAMICS_COMPUTER_CODE
Littlefair, B. , De-La-Cruz, M. , Theodossiades, S. , Mills, R. , Howell-Smith, S. , Rahnejat, H. , and Dwyer-Joyce, R. , 2014, “ Transient Tribo-Dynamics of Thermos-Elastic Compliant High-Performance Piston Skirts,” Tribol. Lett., 53(1), pp. 51–70. [CrossRef]
Dolatabadi, N. , Littlefair, B. , De-La-Cruz, M. , Theodossiades, S. , Rothberg, S. J. , and Rahnejat, H. , 2015, “ A Transient Tribodynamic Approach for the Calculation of Internal Combustion Engine Piston Slap Noise,” J. Sound Vib., 352, pp. 192–209. [CrossRef]
Dolatabadi, N. , Theodossiades, S. , and Rothberg, S. J. , 2015, “ On the Identification of Piston Slap Events in Internal Combustion Engines Using Tribodynamic Analysis,” Mech. Syst. Signal Process., 58–59, pp. 308–324. [CrossRef]
Goenka, P. K. , and Meernik, P. R. , 1992, “ Lubrication Analysis of Piston Skirts,” SAE Paper No. 920490.
Haddad, S. D. , and Tjan, K. T. , 1995, “ An Analytical Study of Offset Piston and Crankshaft Designs and the Effect of Oil Film on Piston Slap Excitation in a Diesel Engine,” Mech. Mach. Theory, 30(2), pp. 271–284. [CrossRef]
Offner, G. , Herbst, H. M. , and Priebsch, H. H. , 2001, “ A Methodology to Simulate Piston Secondary Movement Under Lubricated Contact Conditions,” SAE Paper No. 2001-01-0565.
Nakashima, K. , Yajima, Y. , and Suzuki, K. , 1999, “ Approach to Minimization of Piston Slap Force for Noise Reduction—Investigation of Piston Slap Force by Numerical Simulation,” JSAE Rev., 20(2), pp. 211–216. [CrossRef]
Nakayama, K. , Tamaki, S. , Miki, H. , and Takiguchi, M. , 2000, “ The Effect of Crankshaft Offset on Piston Friction Force in a Gasoline Engine,” SAE Paper No. 2000-01-0922.
Li, D. F. , Rohde, S. M. , and Ezzat, H. A. , 1983, “ An Automotive Piston Lubrication Model,” Am. Soc. Lubr. Eng., Trans. (Tribol. Trans.), 26(2), pp. 151–160.
Mansouri, S. H. , and Wong, V. W. , 2005, “ Effects of Piston Design Parameters on Piston Secondary Motion and Skirt-Liner Friction,” Proc. Inst. Mech. Eng., Part J, 219(6), pp. 435–449. [CrossRef]
Offner, G. , Lorenz, N. , and Knaus, O. , 2012, “ Piston Clearance Optimization Using Thermos-Elasto Hydrodynamic Simulation to Reduce Piston Slap Excitation and Friction Loss,” SAE Paper No. 2012-01-1530.
Vakakis, A. F. , Gendelman, O. V. , Bergman, L. A. , McFarland, D. M. , Kerschen, G. , and Lee, Y. S. , 2008, Nonlinear Targeted Energy Transfer in Mechanical and Structural Systems, Vol. 156, Springer Science and Business Media, B.V. (Birkhauser Verlag), Basel, Switzerland.
Gendelman, O. , Manevitch, L. I. , Vakakis, A. F. , and M'Closkey, R. , 2001, “ Energy Pumping in Nonlinear Mechanical Oscillators: Part I: Dynamics of the Underlying Hamiltonian Systems,” ASME J. Appl. Mech., 68(1), pp. 34–41. [CrossRef]
AL-Shudeifat, M. A. , 2017, “ Nonlinear Energy Sinks With Nontraditional Kinds of Nonlinear Restoring Forces,” ASME J. Vib. Acoust., 139(2), p. 024503.
Gourc, E. , Michon, G. , Seguy, S. , and Berlioz, A. , 2015, “ Targeted Energy Transfer Under Harmonic Forcing With a Vibro-Impact Nonlinear Energy Sink: Analytical and Experimental Developments,” ASME J. Vib. Acoust., 137(3), p. 031008.
Yang, K. , Zhang, Y. , Ding, H. , Yang, T. , Li, Y. , and Chen, L. , 2016, “ Nonlinear Energy Sink for Whole-Spacecraft Vibration Reduction,” ASME J. Vib. Acoust., 139(2), p. 021011.
Li, T. , Seguy, S. , and Berlioz, A. , 2016, “ Dynamics of Cubic and Vibro-Impact Nonlinear Energy Sink: Analytical, Numerical, and Experimental Analysis,” ASME J. Vib. Acoust., 138(3), p. 031010.
Gendelman, O. V. , and Starosvetsky, Y. , 2007, “ Quasi-Periodic Response Regimes of Linear Oscillator Coupled to Nonlinear Energy Sink Under Periodic Forcing,” ASME J. Appl. Mech., 74(2), pp. 325–331. [CrossRef]
Vakakis, A. F. , Manevitch, L. I. , Gendelman, O. , and Bergman, L. , 2003, “ Dynamics of Linear Discrete Systems Connected to Local, Essentially Non-Linear Attachments,” J. Sound Vib., 264(3), pp. 559–577. [CrossRef]
Kurt, M. , Eriten, M. , McFarland, D. M. , Bergman, L. A. , and Vakakis, A. F. , 2014, “ Frequency-Energy Plots of Steady-State Solutions for Forced and Damped Systems, and Vibration Isolation by Nonlinear Mode Localization,” Commun. Nonlinear Sci. Numer. Simul., 19(8), pp. 2905–2917. [CrossRef]
Ji, J. C. , 2012, “ Application of a Weakly Nonlinear Absorber to Suppress the Resonant Vibrations of a Forced Nonlinear Oscillator,” ASME J. Vib. Acoust., 134(4), p. 044502.
Lee, Y. S. , Vakakis, A. F. , Bergman, L. A. , McFarland, D. M. , and Kerschen, G. , 2007, “ Suppressing Aeroelastic Instability Using Broadband Passive Targeted Energy Transfer—Part I: Theory,” AIAA J., 45(3), pp. 693–711. [CrossRef]
Lee, Y. S. , Kerschen, G. , McFarland, D. M. , Bergman, L. A. , and Vakakis, A. F. , 2007, “ Suppressing Aeroelastic Instability Using Broadband Passive Targeted Energy Transfer—Part II: Experiments,” AIAA J., 45(10), pp. 2391–2400. [CrossRef]
Viguie, R. , Kerschen, G. , Golival, J. C. , McFarland, D. M. , Bergman, L. , Vakakis, A. , and van de Wouw, N. , 2007, “ Using Targeted Energy Transfer to Stabilize Drill-String Systems,” The International Modal Analysis Conference XXV (IMAC), Orlando, FL, Feb. 19–22. http://www.dct.tue.nl/New/Wouw/IMAC2007_Viguie.pdf
Mehmood, A. , Nayfeh, A. H. , and Hajj, M. R. , 2014, “ Effects of a Nonlinear Energy Sink (NES) on Vortex-Induced Vibrations of a Circular Cylinder,” J. Nonlinear Dyn., 77(3), pp. 667–680. [CrossRef]
Guo, C. , Al-Shudeifat, M. A. , Vakakis, A. F. , Bergman, L. A. , McFarland, D. M. , and Yan, J. , 2015, “ Vibration Reduction in Unbalanced Hollow Rotor Systems With Nonlinear Energy Sinks,” J. Nonlinear Dyn., 79(1), pp. 527–538. [CrossRef]
Monroe, R. J. , and Shaw, S. W. , 2013, “ Nonlinear Transient Dynamics of Pendulum Torsional Vibration Absorbers—Part I: Theory,” ASME J. Vib. Acoust., 135(1), p. 011017.
Monroe, R. J. , and Shaw, S. W. , 2013, “ Nonlinear Transient Dynamics of Pendulum Torsional Vibration Absorbers—Part II: Experimental Results,” ASME J. Vib. Acoust., 135(1), p. 011018.
Lee, Y. S. , Vakakis, A. F. , Bergman, L. A. , McFarland, D. M. , Kerschen, G. , Nucera, F. , Tsakirtzis, S. , and Panagopoulos, P. N. , 2008, “ Passive Nonlinear Targeted Energy Transfer and Its Application to Vibration Absorption: A Review,” Proc. Inst. Mech. Eng., Part K, 222(2), pp. 77–134. [CrossRef]
Dolatabadi, N. , Theodossiades, S. , and Rothberg, S. J. , 2015, “ Application of Nonlinear Vibration Absorber to the Control of Piston Secondary Motion in Internal Combustion Engines,” ASME Paper No. DETC2015-47410.
Hertz, H. , 1882, “ Über die Berührung Fester Elastischer Körper (On the Contact of Elastic Solids),” J. Reine Angew. Math., 92, pp. 156–171 (For English Translation, see Miscellaneous Papers by H. Hertz, D. E. Jones, and G. A. Schott, eds., Macmillan, London, 1896).
Granick, N. , and Stern, J. E. , 1965, “ Material Damping of Aluminium by a Resonant-Dwell Technique,” NASATechnical Note No. D-2893. https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19650021096.pdf
Crawley, E. F. , and Van Schoor, M. C. , 1987, “ Material Damping in Aluminium and Metal Matrix Composites,” J. Compos. Mater., 21(6), pp. 553–568. [CrossRef]
Cho, J. , and Jang, S. , 2004, “ Effects of Skirt Profiles on the Piston Secondary Movements by the Lubrication Behaviors,” Int. J. Automot. Technol., 5(1), pp. 23–31.
Rahnejat, H. , 1998, Multi-Body Dynamics: Vehicles, Machines and Mechanisms, Professional Engineering Publishing, London.
Carvey, M. R. , Carvey, A. W. , Carvey, P. P. , Rokosz, J. A. , and Howard, N. S. , 2013, “ Non-Linear Torsion Spring Assembly,” US Patent No. US20130075966. http://www.google.co.in/patents/US20130075966
Newmark, N. M. , 1959, “ A Numerical Method for Structural Dynamics,” ASCE J. Eng. Mech., 85(3), pp. 67–94. http://cedb.asce.org/CEDBsearch/record.jsp?dockey=0011858
Timoshenko, S. , Young, D. H. , and Weaver, W. , 1974, Vibration Problems in Engineering, 4th ed., Wiley, New York.
Edara, R. , 2008, “ Reciprocating Engine Piston Secondary Motion—Literature Review,” SAE Paper No. 2008-01-1045.

Figures

Grahic Jump Location
Fig. 1

The generic mechanism of passive TET through nonlinear energy sink (NES) [47]

Grahic Jump Location
Fig. 2

Structure/lubricant property arrangements for the piston dynamics model

Grahic Jump Location
Fig. 3

Piston assembly and its geometric parameters

Grahic Jump Location
Fig. 4

Piston model validated against a dry contact model by Offner et al. [24]: (a) top and (b) bottom lands of the piston skirt (eccentricity displacements et and eb (with respect to the cylinder centerline), antithrust side clearances Ct,ATS and Cb,ATS [24] and thrust-side clearances Ct,TS and Cb,TS [24])

Grahic Jump Location
Fig. 5

Fast Fourier transform spectra of the piston secondary motions: translation (ep) and rotation about the piston pin (β)

Grahic Jump Location
Fig. 6

Single pendulum nonlinear energy absorber coupled with the piston assembly

Grahic Jump Location
Fig. 7

Free body diagrams of the piston and pin, including the absorber reactions

Grahic Jump Location
Fig. 8

Free body diagram of the pendulum absorber (with left diagram showing external excitations and right diagram depicting the inertial forces)

Grahic Jump Location
Fig. 9

Engine speed variations during one engine cycle for different engine speeds

Grahic Jump Location
Fig. 10

Percentage of variation in eccentricity acceleration amplitudes (impact severity) with absorber stiffness coefficient and engine speed

Grahic Jump Location
Fig. 11

Percentage of variation of eccentricity acceleration amplitudes (impact severity) with absorber damping coefficient and engine speed

Grahic Jump Location
Fig. 12

Percentage of variation of eccentricity acceleration amplitudes (impact severity) with absorber damping and stiffness coefficients

Grahic Jump Location
Fig. 13

Percentage of variation of impact number with absorber damping and stiffness coefficients

Grahic Jump Location
Fig. 14

Percentage of variation of energy transfer with absorber damping and stiffness coefficients

Grahic Jump Location
Fig. 15

Pendulum absorber hysteresis loop

Grahic Jump Location
Fig. 16

Eccentricity accelerations at the top and bottom of the piston skirt

Grahic Jump Location
Fig. 17

Eccentricity displacements at the top and bottom of the piston skirt

Grahic Jump Location
Fig. 18

Piston secondary motions (translation and rotation) and angular oscillations of pendulum

Grahic Jump Location
Fig. 19

Frequency spectrum of the piston secondary motions and pendulum angular oscillations for 3500 rpm engine speed

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In