0
Research Papers

Number of Wavevectors for Each Frequency in a Periodic Structure

[+] Author and Article Information
Farhad Farzbod

Mem. ASME
Department of Mechanical Engineering,
University of Mississippi,
201A Carrier Hall,
University, MS 38677
e-mail: farzbod@olemiss.edu

Contributed by the Technical Committee on Vibration and Sound of ASME for publication in the JOURNAL OF VIBRATION AND ACOUSTICS. Manuscript received September 6, 2016; final manuscript received March 16, 2017; published online June 22, 2017. Assoc. Editor: Mahmoud Hussein.

J. Vib. Acoust 139(5), 051006 (Jun 22, 2017) (8 pages) Paper No: VIB-16-1450; doi: 10.1115/1.4036466 History: Received September 06, 2016; Revised March 16, 2017

Periodic structures have interesting acoustic and vibration properties making them suitable for a wide variety of applications. In a periodic structure, the number of frequencies for each wavevector depends on the degrees-of-freedom of the unit cell. In this paper, we study the number of wavevectors available at each frequency in a band diagram. This analysis defines the upper bound for the maximum number of wavevectors for each frequency in a general periodic structure which might include damping. Investigation presented in this paper can also provide an insight for designing materials in which the interaction between unit cells is not limited to the closest neighbor. As an example application of this work, we investigate phonon dispersion curves in hexagonal form of boron nitride to show that first neighbor interaction is not sufficient to model dispersion curves with force-constant model.

FIGURES IN THIS ARTICLE
<>
Copyright © 2017 by ASME
Your Session has timed out. Please sign back in to continue.

References

Brillouin, L. , 2003, Wave Propagation in Periodic Structures: Electric Filters and Crystal Lattices, Courier, Dover Publications, Mineola, NY.
Mead, D. J. , and Markus, S. , 1969, “ The Forced Vibration of a Three-Layer, Damped Sandwich Beam With Arbitrary Boundary Conditions,” J. Sound Vib., 10(2), pp. 163–175. [CrossRef]
Mead, D. J. , 1975, “ Wave-Propagation and Natural Modes in Periodic Systems—1: Mono-Coupled Systems,” J. Sound Vib., 40(1), pp. 1–18. [CrossRef]
Faulkner, M. G. , and Hong, D. P. , 1985, “ Free-Vibrations of a Mono-Coupled Periodic System,” J. Sound Vib., 99(1), pp. 29–42. [CrossRef]
Vonflotow, A. H. , 1986, “ Disturbance Propagation in Structural Networks,” J. Sound Vib., 106(3), pp. 433–450. [CrossRef]
Yong, Y. , and Lin, Y. K. , 1989, “ Propagation of Decaying Waves in Periodic and Piecewise Periodic Structures of Finite Length,” J. Sound Vib., 129(1), pp. 99–118. [CrossRef]
Romeo, F. , and Paolone, A. , 2007, “ Wave Propagation in Three-Coupled Periodic Structures,” J. Sound Vib., 301(3–5), pp. 635–648. [CrossRef]
Yu, D. L. , Fang, J. Y. , Cai, L. , Han, X. Y. , and Wen, J. H. , 2009, “ Triply Coupled Vibrational Band Gap in a Periodic and Nonsymmetrical Axially Loaded Thin-Walled Bernoulli–Euler Beam Including the Warping Effect,” Phys. Lett. A, 373(38), pp. 3464–3469. [CrossRef]
Langley, R. S. , Bardell, N. S. , and Ruivo, H. M. , 1997, “ The Response of Two-Dimensional Periodic Structures to Harmonic Point Loading: A Theoretical and Experimental Study of a Beam Grillage,” J. Sound Vib., 207(4), pp. 521–535. [CrossRef]
Manconi, E. , and Mace, B. R. , 2009, “ Wave Characterization of Cylindrical and Curved Panels Using a Finite Element Method,” J. Acoust. Soc. Am., 125(1), pp. 154–163. [CrossRef] [PubMed]
Ruzzene, M. , and Baz, A. , 2000, “ Control of Wave Propagation in Periodic Composite Rods Using Shape Memory Inserts,” ASME J. Vib. Acoust., 122(2), pp. 151–159. [CrossRef]
Duhamel, D. , Mace, B. R. , and Brennan, M. J. , 2006, “ Finite Element Analysis of the Vibrations of Waveguides and Periodic Structures,” J. Sound Vib., 294(1–2), pp. 205–220. [CrossRef]
Pany, C. , and Parthan, S. , 2003, “ Axial Wave Propagation in Infinitely Long Periodic Curved Panels,” ASME J. Vib. Acoust., 125(1), pp. 24–30. [CrossRef]
Kulpe, J. A. , Sabra, K. G. , and Leamy, M. J. , 2016, “ Acoustic Scattering From Phononic Crystals With Complex Geometry,” J. Acoust. Soc. Am., 139(5), pp. 3009–3020. [CrossRef] [PubMed]
Kulpe, J. A. , Sabra, K. G. , and Leamy, M. J. , 2015, “ A Three-Dimensional Bloch Wave Expansion to Determine External Scattering From Finite Phononic Crystals,” J. Acoust. Soc. Am., 137(6), pp. 3299–3313. [CrossRef] [PubMed]
Hussein, M. I. , Leamy, M. J. , and Ruzzene, M. , 2014, “ Dynamics of Phononic Materials and Structures: Historical Origins, Recent Progress, and Future Outlook,” ASME Appl. Mech. Rev., 66(4), p. 040802. [CrossRef]
Manktelow, K. L. , Leamy, M. J. , and Ruzzene, M. , 2014, “ Weakly Nonlinear Wave Interactions in Multi-Degree of Freedom Periodic Structures,” Wave Motion, 51(6), pp. 886–904. [CrossRef]
Kulpe, J. A. , Leamy, M. J. , and Sabra, K. G. , 2014, “ Determination of Acoustic Scattering From a Two-Dimensional Finite Phononic Crystal Using Bloch Wave Expansion,” ASME Paper No. DETC2014-34404.
Manktelow, K. L. , Leamy, M. J. , and Ruzzene, M. , 2014, “ Analysis and Experimental Estimation of Nonlinear Dispersion in a Periodic String,” ASME J. Vib. Acoust., 136(3), p. 031016. [CrossRef]
Kulpe, J. A. , Leamy, M. J. , and Sabra, K. G. , 2014, “ Exploration of a Bloch Wave Expansion Technique for Analyzing Backscattering From Large Fish Schools,” J. Acoust. Soc. Am., 135(4), p. 2177. [CrossRef]
Kulpe, J. A. , Sabra, K. G. , and Leamy, M. J. , 2014, “ Bloch-Wave Expansion Technique for Predicting Wave Reflection and Transmission in Two-Dimensional Phononic Crystals,” J. Acoust. Soc. Am., 135(4), pp. 1808–1819. [CrossRef] [PubMed]
Manktelow, K. , Narisetti, R. K. , Leamy, M. J. , and Ruzzene, M. , 2013, “ Finite-Element Based Perturbation Analysis of Wave Propagation in Nonlinear Periodic Structures,” Mech. Syst. Signal Process., 39(1), pp. 32–46. [CrossRef]
Baz, A. , 2001, “ Active Control of Periodic Structures,” ASME J. Vib. Acoust., 123(4), pp. 472–479. [CrossRef]
Hussein, M. I. , Hamza, K. , Hulbert, G. M. , Scott, R. A. , and Saitou, K. , 2006, “ Multiobjective Evolutionary Optimization of Periodic Layered Materials for Desired Wave Dispersion Characteristics,” Struct. Multidiscip. Optim., 31(1), pp. 60–75. [CrossRef]
Jensen, J. S. , 2003, “ Phononic Band Gaps and Vibrations in One- and Two-Dimensional Mass–Spring Structures,” J. Sound Vib., 266(5), pp. 1053–1078. [CrossRef]
Ruzzene, M. , Scarpa, F. , and Soranna, F. , 2003, “ Wave Beaming Effects in Two-Dimensional Cellular Structures,” Smart Mater. Struct., 12(3), pp. 363–372. [CrossRef]
Hempelmann, R. , 2000, Quasielastic Neutron Scattering and Solid State Diffusion, Oxford University Press, New York.
Rols, S. , Benes, Z. , Anglaret, E. , Sauvajol, J. L. , Papanek, P. , Fischer, J. E. , Coddens, G. , Schober, H. , and Dianoux, A. J. , 2000, “ Phonon Density of States of Single-Wall Carbon Nanotubes,” Phys. Rev. Lett., 85(24), pp. 5222–5225. [CrossRef] [PubMed]
Gruneis, A. , Saito, R. , Kimura, T. , Cancado, L. G. , Pimenta, M. A. , Jorio, A. , Souza, A. G. , Dresselhaus, G. , and Dresselhaus, M. S. , 2002, “ Determination of Two-Dimensional Phonon Dispersion Relation of Graphite by Raman Spectroscopy,” Phys. Rev. B., 65(15), p. 7. [CrossRef]
Rokuta, E. , Hasegawa, Y. , Suzuki, K. , Gamou, Y. , Oshima, C. , and Nagashima, A. , 1997, “ Phonon Dispersion of an Epitaxial Monolayer Film of Hexagonal Boron Nitride on Ni(111),” Phys. Rev. Lett., 79(23), pp. 4609–4612. [CrossRef]
Atkins, P. , and De Paula, J. , 2016, Elements of Physical Chemistry, Oxford University Press, Oxford, UK.
Baskes, M. I. , Asta, M. , and Srinivasan, S. G. , 2001, “ Determining the Range of Forces in Empirical Many-Body Potentials Using First-Principles Calculations,” Philos. Mag. A, 81(4), pp. 991–1008. [CrossRef]
Aljishi, R. , and Dresselhaus, G. , 1982, “ Lattice-Dynamical Model for Graphite,” Phys. Rev. B, 26(8), pp. 4514–4522. [CrossRef]
Jishi, R. A. , and Dresselhaus, M. S. , 1992, “ Phonon Modes in Graphite, C60, and C60-Based Fibers,” Phys. Rev. B, 45(19), pp. 11305–11311. [CrossRef]
Jishi, R. A. , Venkataraman, L. , Dresselhaus, M. S. , and Dresselhaus, G. , 1993, “ Phonon Modes in Carbon Nanotubules,” Chem. Phys. Lett., 209(1–2), pp. 77–82. [CrossRef]
Saito, R. , Dresselhaus, G. , and Dresselhaus, M. S. , 1998, Physical Properties of Carbon Nanotubes, World Scientific, Imperial College Press, London.
Dove, M. T. , 1993, Introduction to Lattice Dynamics, Cambridge University Press, New York.
Farzbod, F. , and Leamy, M. J. , 2009, “ The Treatment of Forces in Bloch Analysis,” J. Sound Vib., 325(3), pp. 545–551. [CrossRef]
Farzbod, F. , and Leamy, M. J. , 2011, “ Analysis of Bloch's Method and the Propagation Technique in Periodic Structures,” ASME J. Vib. Acoust., 133(3), p. 031010. [CrossRef]
Farzbod, F. , and Leamy, M. J. , 2011, “ Analysis of Bloch's Method in Structures With Energy Dissipation,” ASME J. Vib. Acoust., 133(5), p. 051010. [CrossRef]
Farzbod, F. , 2010, “ Analysis of Bloch Formalism in Undamped and Damped Periodic Structures,” Ph.D. thesis, Georgia Institute of Technology, Atlanta, GA. https://smartech.gatech.edu/bitstream/handle/1853/42885/farzbod_farhad_201012_phd.pdf
Meyer, C. , 2001, Matrix Analysis and Applied Linear Algebra, SIAM, Philadelphia, PA.
Rubio, A. , Corkill, J. L. , and Cohen, M. L. , 1994, “ Theory of Graphitic Boron Nitride Nanotubes,” Phys. Rev. B, 49(7), p. 5081. [CrossRef]
Chopra, N. G. , Luyken, R. J. , Cherrey, K. , Crespi, V. H. , Cohen, M. L. , Louie, S. G. , and Zettl, A. , 1995, “ Boron-Nitride Nanotubes,” Science, 269(5226), pp. 966–967. [CrossRef] [PubMed]
Wang, Y. , Wang, J. J. , Wang, W. Y. , Mei, Z. G. , Shang, S. L. , Chen, L. Q. , and Liu, Z. K. , 2010, “ A Mixed-Space Approach to First-Principles Calculations of Phonon Frequencies for Polar Materials,” J. Phys.: Condens. Matter, 22(20), p. 5. http://iopscience.iop.org/article/10.1088/0953-8984/22/20/202201/meta

Figures

Grahic Jump Location
Fig. 1

Dispersion curve for a general diatomic chain

Grahic Jump Location
Fig. 2

A sample two-dimensional structure with out of plane motion and some internal masses

Grahic Jump Location
Fig. 3

Two-dimensional structure with out of plane motion

Grahic Jump Location
Fig. 4

Boron nitride in its hexagonal crystalline form (h-BN) and the unit cell displacements

Grahic Jump Location
Fig. 5

Phonon dispersion curves of h-BN calculated by Wang et al. [45] (solid lines) and X-ray scattering (circles). The close-up of the box in the bottom left part of the graph is depicted on the right. The straight line at 0.32 THz shows an example value of ω for which we have more than six wavevectors.

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In