On the Nonlinear Dynamics of a Doubly Clamped Microbeam Near Primary Resonance

[+] Author and Article Information
Nizar R. Jaber

Physical Science and Engineering Division,
King Abdullah University of Science and Technology (KAUST),
P. O. Box 4700,
Thuwal 23955-6900, Saudi Arabia

Karim M. Masri

Department of Mechanical Engineering,
State University of New York,
Binghamton, NY 13850

Mohammad I. Younis

Physical Science and Engineering Division,
King Abdullah University of Science and Technology (KAUST),
P. O. Box 4700,
Thuwal 23955-6900, Saudi Arabia;
Department of Mechanical Engineering,
State University of New York,
Binghamton, NY 13850
e-mail: Mohammad.Younis@kaust.edu.sa

1Corresponding author.

Contributed by the Technical Committee on Vibration and Sound of ASME for publication in the JOURNAL OF VIBRATION AND ACOUSTICS. Manuscript received November 28, 2016; final manuscript received March 25, 2017; published online May 30, 2017. Assoc. Editor: Hanna Cho.

J. Vib. Acoust 139(4), 040902 (May 30, 2017) (5 pages) Paper No: VIB-16-1563; doi: 10.1115/1.4036399 History: Received November 28, 2016; Revised March 25, 2017

This work aims to investigate theoretically and experimentally various nonlinear dynamic behaviors of a doubly clamped microbeam near its primary resonance. Mainly, we investigate the transition behavior from hardening, mixed, and then softening behavior. We show in a single frequency–response curve, under a constant voltage load, the transition from hardening to softening behavior demonstrating the dominance of the quadratic electrostatic nonlinearity over the cubic geometric nonlinearity of the beam as the motion amplitudes becomes large, which may lead eventually to dynamic pull-in. The microbeam is fabricated using polyimide as a structural layer coated with nickel from top and chromium and gold layers from the bottom. Frequency sweep tests are conducted for different values of direct current (DC) bias revealing hardening, mixed, and softening behavior of the microbeam. A multimode Galerkin model combined with a shooting technique are implemented to generate the frequency–response curves and to analyze the stability of the periodic motions using the Floquet theory. The simulated curves show a good agreement with the experimental data.

Copyright © 2017 by ASME
Your Session has timed out. Please sign back in to continue.


Zhang, W.-M. , Hu, K.-M. , Peng, Z.-K. , and Meng, G. , 2015, “ Tunable Micro- and Nanomechanical Resonators,” Sensors, 15(10), pp. 26478–26566. [CrossRef] [PubMed]
Younis, M. I. , 2011, MEMS Linear and Nonlinear Statics and Dynamics: Mems Linear and Nonlinear Statics and Dynamics, Springer Science & Business Media, New York.
Thundat, T. , Wachter, E. , Sharp, S. , and Warmack, R. , 1995, “ Detection of Mercury Vapor Using Resonating Microcantilevers,” Appl. Phys. Lett., 66(13), pp. 1695–1697. [CrossRef]
Schmid, S. , Senn, P. , and Hierold, C. , 2008, “ Electrostatically Actuated Nonconductive Polymer Microresonators in Gaseous and Aqueous Environment,” Sens. Actuators A: Phys., 145–146, pp. 442–448. [CrossRef]
Kumar, V. , Boley, J. W. , Yang, Y. , Ekowaluyo, H. , Miller, J. K. , Chiu, G. T.-C. , and Rhoads, J. F. , 2011, “ Bifurcation-Based Mass Sensing Using Piezoelectrically-Actuated Microcantilevers,” Appl. Phys. Lett., 98(15), p. 153510. [CrossRef]
Dohn, S. , Sandberg, R. , Svendsen, W. , and Boisen, A. , 2005, “ Enhanced Functionality of Cantilever Based Mass Sensors Using Higher Modes,” Appl. Phys. Lett., 86(23), p. 233501. [CrossRef]
Olcum, S. , Cermak, N. , Wasserman, S. C. , and Manalis, S. R. , 2015, “ High-Speed Multiple-Mode Mass-Sensing Resolves Dynamic Nanoscale Mass Distributions,” Nat. Commun., 6, p. 7070. [CrossRef] [PubMed]
Jin, D. , Li, X. , Liu, J. , Zuo, G. , Wang, Y. , Liu, M. , and Yu, H. , 2006, “ High-Mode Resonant Piezoresistive Cantilever Sensors for Tens-Femtogram Resoluble Mass Sensing in Air,” J. Micromech. Microeng., 16(5), p. 1017. [CrossRef]
Cho, H. , Yu, M.-F. , Vakakis, A. F. , Bergman, L. A. , and McFarland, D. M. , 2010, “ Tunable, Broadband Nonlinear Nanomechanical Resonator,” Nano Lett., 10(5), pp. 1793–1798. [CrossRef] [PubMed]
Hanay, M. , Kelber, S. , Naik, A. , Chi, D. , Hentz, S. , Bullard, E. , Colinet, E. , Duraffourg, L. , and Roukes, M. , 2012, “ Single-Protein Nanomechanical Mass Spectrometry in Real Time,” Nat. Nanotechnol., 7(9), pp. 602–608. [CrossRef] [PubMed]
Nguyen, V.-N. , Baguet, S. , Lamarque, C.-H. , and Dufour, R. , 2015, “ Bifurcation-Based Micro-/Nanoelectromechanical Mass Detection,” Nonlinear Dyn., 79(1), pp. 647–662. [CrossRef]
Harne, R. , and Wang, K. , 2013, “ A Review of the Recent Research on Vibration Energy Harvesting Via Bistable Systems,” Smart Mater. Struct., 22(2), p. 023001. [CrossRef]
Erturk, A. , and Inman, D. J. , 2008, “ A Distributed Parameter Electromechanical Model for Cantilevered Piezoelectric Energy Harvesters,” ASME J. Vib. Acoust., 130(4), p. 041002. [CrossRef]
Abdelkefi, A. , Najar, F. , Nayfeh, A. , and Ayed, S. B. , 2011, “ An Energy Harvester Using Piezoelectric Cantilever Beams Undergoing Coupled Bending–Torsion Vibrations,” Smart Mater. Struct., 20(11), p. 115007. [CrossRef]
Abdelkefi, A. , Nayfeh, A. , Hajj, M. , and Najar, F. , 2012, “ Energy Harvesting From a Multifrequency Response of a Tuned Bending–Torsion System,” Smart Mater. Struct., 21(7), p. 075029. [CrossRef]
Jemai, A. , Najar, F. , Chafra, M. , and Ounaies, Z. , 2016, “ Modeling and Parametric Analysis of a Unimorph Piezocomposite Energy Harvester With Interdigitated Electrodes,” Compos. Struct., 135, pp. 176–190. [CrossRef]
Mahboob, I. , Flurin, E. , Nishiguchi, K. , Fujiwara, A. , and Yamaguchi, H. , 2011, “ Interconnect-Free Parallel Logic Circuits in a Single Mechanical Resonator,” Nat. Commun., 2, p. 198. [CrossRef] [PubMed]
Hafiz, M. A. A. , Kosuru, L. , and Younis, M. I. , 2016, “ Microelectromechanical Reprogrammable Logic Device,” Nat. Commun., 7, p. 11137. [CrossRef] [PubMed]
Mestrom, R. , Fey, R. , van Beek, J. , Phan, K. , and Nijmeijer, H. , 2008, “ Modelling the Dynamics of a MEMS Resonator: Simulations and Experiments,” Sens. Actuators A: Phys., 142(1), pp. 306–315. [CrossRef]
Nayfeh, A. H. , Younis, M. I. , and Abdel-Rahman, E. M. , 2005, “ Reduced-Order Models for MEMS Applications,” Nonlinear Dyn., 41(1), pp. 211–236. [CrossRef]
Younis, M. I. , and Nayfeh, A. H. , 2003, “ A Study of the Nonlinear Response of a Resonant Microbeam to an Electric Actuation,” Nonlinear Dyn., 31(1), pp. 91–117. [CrossRef]
Rhoads, J. F. , Shaw, S. W. , Turner, K. L. , Moehlis, J. , DeMartini, B. E. , and Zhang, W. , 2006, “ Generalized Parametric Resonance in Electrostatically Actuated Microelectromechanical Oscillators,” J. Sound Vib., 296(4–5), pp. 797–829. [CrossRef]
Elshurafa, A. M. , Khirallah, K. , Tawfik, H. H. , Emira, A. , Aziz, A. K. S. A. , and Sedky, S. M. , 2011, “ Nonlinear Dynamics of Spring Softening and Hardening in Folded-MEMS Comb Drive Resonators,” J. Microelectromech. Syst., 20(4), pp. 943–958. [CrossRef]
Saghir, S. , and Younis, M. I. , 2016, “ An Investigation of the Static and Dynamic Behavior of Electrically Actuated Rectangular Microplates,” Int. J. Nonlinear Mech., 85, pp. 81–93. [CrossRef]
Ouakad, H. M. , and Younis, M. I. , 2009, “ Nonlinear Dynamics of Electrically Actuated Carbon Nanotube Resonators,” ASME J. Comput. Nonlinear Dyn., 5(1), p. 011009. [CrossRef]
Kojiro, T. , Keiichiro, N. , Masao, N. , Hiroshi, Y. , Shin'ichi, W. , and Sunao, I. , 2009, “ Direct Actuation of GaAs Membrane With the Microprobe of Scanning Probe Microscopy,” Jpn. J. Appl. Phys., 48(6S), p. 06FG06.
Mestrom, R. , Fey, R. , Phan, K. , and Nijmeijer, H. , 2010, “ Simulations and Experiments of Hardening and Softening Resonances in a Clamped–Clamped Beam MEMS Resonator,” Sens. Actuators A: Phys., 162(2), pp. 225–234. [CrossRef]
Kacem, N. , and Hentz, S. , 2009, “ Bifurcation Topology Tuning of a Mixed Behavior in Nonlinear Micromechanical Resonators,” Appl. Phys. Lett., 95(18), p. 183104. [CrossRef]
Sahai, T. , Bhiladvala, R. B. , and Zehnder, A. T. , 2007, “ Thermomechanical Transitions in Doubly-Clamped Micro-Oscillators,” Int. J. Nonlinear Mech., 42(4), pp. 596–607. [CrossRef]
Nayfeh, A. H. , Younis, M. I. , and Abdel-Rahman, E. M. , 2007, “ Dynamic Pull-in Phenomenon in MEMS Resonators,” Nonlinear Dyn., 48(1), pp. 153–163. [CrossRef]
Kacem, N. , Hentz, S. , Pinto, D. , Reig, B. , and Nguyen, V. , 2009, “ Nonlinear Dynamics of Nanomechanical Beam Resonators: Improving the Performance of NEMS-Based Sensors,” Nanotechnology, 20(27), p. 275501. [CrossRef] [PubMed]
Bataineh, A. M. , and Younis, M. I. , 2014, “ Dynamics of a Clamped–Clamped Microbeam Resonator Considering Fabrication Imperfections,” Microsyst. Technol., 21(11), pp. 2425–2434. [CrossRef]
Jaber, N. , Ramini, A. , and Younis, M. I. , 2016, “ Multifrequency Excitation of a Clamped–Clamped Microbeam: Analytical and Experimental Investigation,” Microsyst. Nanoeng., 2, p. 16002. [CrossRef]
Arevalo, A. , Byas, E. , Conchouso, D. , Castro, D. , Ilyas, S. , and Foulds, I. G. , 2015, “ A Versatile Multi-User Polyimide Surface Micromachinning Process for MEMS Applications,” IEEE Tenth International Conference on Nano/Micro Engineered and Molecular Systems (NEMS), Xi'an, China, Apr. 7–11, pp. 561–565.
Jaber, N. , Ramini, A. , Carreno, A. A. , and Younis, M. I. , 2016, “ Higher Order Modes Excitation of Electrostatically Actuated Clamped–Clamped Microbeams: Experimental and Analytical Investigation,” J. Micromech. Microeng., 26(2), p. 025008. [CrossRef]
Caruntu, D. I. , and Knecht, M. W. , 2015, “ Microelectromechanical Systems Cantilever Resonators Under Soft Alternating Current Voltage of Frequency Near Natural Frequency,” ASME J. Dyn. Syst., Meas., Control, 137(4), p. 041016. [CrossRef]
Younis, M. I. , Abdel-Rahman, E. M. , and Nayfeh, A. , 2003, “ A Reduced-Order Model for Electrically Actuated Microbeam-Based MEMS,” J. Microelectromech. Syst., 12(5), pp. 672–680. [CrossRef]
Ruzziconi, L. , Ramini, A. H. , Younis, M. I. , and Lenci, S. , 2014, “ Theoretical Prediction of Experimental Jump and Pull-in Dynamics in a MEMS Sensor,” Sensors, 14(9), pp. 17089–17111. [CrossRef] [PubMed]
Ruzziconi, L. , Younis, M. I. , and Lenci, S. , 2013, “ Multistability in an Electrically Actuated Carbon Nanotube: A Dynamical Integrity Perspective,” Nonlinear Dyn., 74(3), pp. 533–549. [CrossRef]
Ruzziconi, L. , Younis, M. I. , and Lenci, S. , 2013, “ An Electrically Actuated Imperfect Microbeam: Dynamical Integrity for Interpreting and Predicting the Device Response,” Meccanica, 48(7), pp. 1761–1775. [CrossRef]
Alsaleem, F. M. , Younis, M. I. , and Ruzziconi, L. , 2010, “ An Experimental and Theoretical Investigation of Dynamic Pull-in in MEMS Resonators Actuated Electrostatically,” J. Microelectromech. Syst., 19(4), pp. 794–806. [CrossRef]


Grahic Jump Location
Fig. 1

A cross-sectional view of the fabricated microbeam

Grahic Jump Location
Fig. 2

A top view picture of the fabricated microbeam and the actuation pad

Grahic Jump Location
Fig. 3

Experimental setup used for testing the MEMS device

Grahic Jump Location
Fig. 4

Schematic of the doubly clamped microbeam with the half electrode

Grahic Jump Location
Fig. 5

A three-dimensional map of the microstructure profile as seen from the top

Grahic Jump Location
Fig. 6

Static deflection of the beam midpoint with the DC voltage until pull-in

Grahic Jump Location
Fig. 7

Frequency–response to white noise actuation signal at VDC = 30 V, VAC = 50 V, and at 4 mTorr chamber pressure

Grahic Jump Location
Fig. 8

Frequency–response curve showing almost linear behavior at VDC = 20 V and VAC = 5 V

Grahic Jump Location
Fig. 9

Frequency–response curve showing hardening behavior at VDC = 25 V and VAC = 5 V

Grahic Jump Location
Fig. 10

Frequency–response curve showing a hardening then softening behavior (mixed response) at VDC = 35 V and VAC = 5 V

Grahic Jump Location
Fig. 11

Frequency–response curve showing a hardening then softening behavior (mixed response) at VDC = 40 V and VAC = 5 V

Grahic Jump Location
Fig. 12

Frequency–response curve showing a softening behavior at VDC = 45 V and VAC = 5 V



Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In