0
Technical Brief

Nonlinear Energy Sinks With Nontraditional Kinds of Nonlinear Restoring Forces

[+] Author and Article Information
Mohammad A. AL-Shudeifat

Aerospace Engineering,
Khalifa University of Science, Technology and Research,
Abu Dhabi 127788, UAE
e-mail: mohd.shudeifat@kustar.ac.ae

Contributed by the Technical Committee on Vibration and Sound of ASME for publication in the JOURNAL OF VIBRATION AND ACOUSTICS. Manuscript received July 3, 2015; final manuscript received December 2, 2016; published online February 22, 2017. Assoc. Editor: Paul C.-P. Chao.

J. Vib. Acoust 139(2), 024503 (Feb 22, 2017) (5 pages) Paper No: VIB-15-1245; doi: 10.1115/1.4035479 History: Received July 03, 2015; Revised December 02, 2016

The nonlinear energy sink (NES) is usually coupled with a linear oscillator (LO) to rapidly transfer and immediately dissipate a significant portion of the initial shock energy induced into the LO. This passive energy transfer and dissipation are usually achieved through strong resonance captures between the NES and the LO responses. Here, a nontraditional set of nonlinear coupling restoring forces is numerically investigated to introduce enhanced versions of the NESs. In this new set of nonlinear coupling restoring forces, one has a varying nonlinear stiffness that includes both of hardening and softening stiffness components during the oscillation, which appear in closed-loops under the effect of the damping. The obtained results by the numerical simulation have shown that employing this kind of the nonlinear restoring forces for passive targeted energy transfer (TET) is promising for shock mitigation.

FIGURES IN THIS ARTICLE
<>
Copyright © 2017 by ASME
Your Session has timed out. Please sign back in to continue.

References

Vakakis, A. F. , Gendelman, O. V. , Kerschen, G. , Bergman, L. A. , McFarland, D. M. , and Lee, Y. S. , 2008, Nonlinear Targeted Energy Transfer in Mechanical and Structural Systems, I and II, Springer Verlag, Berlin.
Vakakis, A. F. , and Gendelman, O. , 2001, “ Energy Pumping in Nonlinear Mechanical Oscillators: Part II—Resonance Capture,” ASME J. Appl. Mech., 68(1), pp. 42–48. [CrossRef]
Lee, Y. S. , Kerschen, G. , Vakakis, A. F. , Panagopoulos, P. , Bergman, L. , and McFarland, D. M. , 2005, “ Complicated Dynamics of a Linear Oscillator With a Light, Essentially Nonlinear Attachment,” Physica D, 204(1–2), pp. 41–69. [CrossRef]
Gourdon, E. , Alexander, N. A. , Taylor, C. A. , Lamarque, C. H. , and Pernot, S. , 2007, “ Nonlinear Energy Pumping Under Transient Forcing With Strongly Nonlinear Coupling: Theoretical and Experimental Results,” J. Sound Vib., 300(3–5), pp. 522–551. [CrossRef]
McFarland, D. M. , Bergman, L. A. , and Vakakis, A. F. , 2005, “ Experimental Study of Non-Linear Energy Pumping Occurring at a Single Fast Frequency,” Int. J. Non-Linear Mech., 40(6), pp. 891–899. [CrossRef]
Vakakis, A. F. , 2003, “ Shock Isolation Through the Use of Nonlinear Energy Sinks,” J. Vib. Control, 9(1–2), pp. 79–93. [CrossRef]
Wierschem, N. , Luo, J. , Quinn, D. D. , Hubbard, S. , AL-Shudeifat, M. A. , McFarland, D. M. , Vakakis, A. F. , Bergman, L. A. , and Spencer, B. F., Jr. , 2012, “ Passive Damping Enhancement of a Two-Degree-of-Freedom System Through a Strongly Nonlinear Two-Degree-of-Freedom Attachment,” J. Sound Vib., 331(25), pp. 5393–5407. [CrossRef]
Sapsis, T. P. , Quinn, D. D. , Vakakis, A. F. , and Bergman, L. A. , 2012, “ Effective Stiffening and Damping Enhancement of Structures With Strongly Nonlinear Local Attachments,” ASME J. Vib. Acoust., 134(1), p. 011016. [CrossRef]
AL-Shudeifat, M. A. , 2015, “ Asymmetric Magnet-Based Nonlinear Energy Sink,” ASME J. Comput. Nonlinear Dyn., 10(1), p. 014502. [CrossRef]
Vakakis, A. F. , AL-Shudeifat, M. A. , and Hasan, M. A. , 2014, “ Interactions of Propagating Waves in a One-Dimensional Chain of Linear Oscillators With a Strongly Nonlinear Local Attachment,” Meccanica, 49(10), pp. 2375–2397. [CrossRef]
Sigalov, G. , Gendelman, O. V. , AL-Shudeifat, M. A. , Manevitch, L. I. , Vakakis, A. F. , and Bergman, L. A. , 2012, “ Resonance Captures and Targeted Energy Transfers in an Inertially Coupled Rotational Nonlinear Energy Sink,” Nonlinear Dyn., 69(4), pp. 1693–1704. [CrossRef]
Sigalov, G. , Gendelman, O. V. , AL-Shudeifat, M. A. , Manevitch, L. I. , Vakakis, A. F. , and Bergman, L. A. , 2012, “ Alternation of Regular and Chaotic Dynamics in a Simple Two-Degree-of-Freedom System With Nonlinear Inertial Coupling,” Chaos, 22(1), p. 013118. [CrossRef] [PubMed]
AL-Shudeifat, M. A. , 2014, “ Highly Efficient Nonlinear Energy Sink,” Nonlinear Dyn., 76(4), pp. 1905–1920. [CrossRef]
Manevitch, L. I. , Sigalov, G. , Romeo, F. , Bergman, L. A. , and Vakakis, A. , 2013, “ Dynamics of a Linear Oscillator Coupled to a Bistable Light Attachment: Analytical Study,” ASME J. Appl. Mech., 81(4), p. 041011. [CrossRef]
Sigalov, G. , Bergman, L. A. , and Vakakis, A. F. , 2014, “ Dynamics of a Linear Oscillator Coupled to a Bistable Light Attachment: Numerical Study,” ASME J. Comput. Nonlinear Dyn., 10(1), p. 011007. [CrossRef]
Nucera, F. , Vakakis, A. F. , McFarland, D. M. , Bergman, L. A. , and Kerschen, G. , 2007, “ Targeted Energy Transfers in Vibro-Impact Oscillators for Seismic Mitigation,” Nonlinear Dyn., 50(3), pp. 651–677. [CrossRef]
Karayannis, I. , Vakakis, A. F. , and Georgiades, F. , 2008, “ Vibro-Impact Attachments as Shock Absorbers,” Proc. Inst. Mech. Eng., Part J, 222(10), pp. 1899–1908. [CrossRef]
Nucera, F. , McFarland, D. M. , Bergman, L. A. , and Vakakis, A. F. , 2010, “ Application of Broadband Nonlinear Targeted Energy Transfers for Seismic Mitigation of a Shear Frame—I: Computational Results,” J. Sound Vib., 329(15), pp. 2973–2994. [CrossRef]
Lee, Y. S. , Nucera, F. , Vakakis, A. F. , McFarland, D. M. , and Bergman, L. A. , 2009, “ Periodic Orbits, Damped Transitions and Targeted Energy Transfers in Oscillators With Vibro-Impact Attachments,” Physica D, 238(18), pp. 1868–1896. [CrossRef]
Georgiadis, F. , Vakakis, A. F. , McFarland, D. M. , and Bergman, L. A. , 2005, “ Shock Isolation Through Passive Energy Pumping Caused by Non-Smooth Nonlinearities,” Int. J. Bifurcation Chaos, 15(6), pp. 1989–2001. [CrossRef]
AL-Shudeifat, M. A. , Wierschem, N. , Quinn, D. D. , Vakakis, A. F. , Bergman, L. A. , and Spencer, B. F., Jr. , 2013, “ Numerical and Experimental Investigation of a Highly Effective Single-Sided Vibro-Impact Nonlinear Energy Sink for Shock Mitigation,” Int. J. Non-Linear Mech., 52, pp. 96–109. [CrossRef]
Luo, J. , Wierschem, N. E. , Hubbard, S. A. , Fahnestock, L. A. , Quinn, D. D. , McFarland, D. M. , Spencer, B. F., Jr. , Vakakis, A. F. , and Bergman, L. A. , 2014, “ Large-Scale Experimental Evaluation and Numerical Simulation of a System of Nonlinear Energy Sinks for Seismic Mitigation,” Eng. Struct., 77, pp. 34–48. [CrossRef]
Luo, J. , Wierschem, N. E. , Fahnestock, L. A. , Spencer, B. F., Jr. , Quinn, D. D. , McFarland, D. M. , Vakakis, A. F. , and Bergman, L. A. , 2014, “ Design, Simulation, and Large-Scale Testing of an Innovative Vibration Mitigation Device Employing Essentially Nonlinear Elastomeric Springs,” Earthquake Eng. Struct. Dyn., 43(12), pp. 1829–1851. [CrossRef]
Quinn, D. D. , Wierschem, N. , Hubbard, S. , AL-Shudeifat, M. A. , Ott, R. J. , McFarland, D. M. , Vakakis, A. F. , and Bergman, L. A. , 2012, “ Equivalent Modal Damping, Stiffening and Energy Exchanges in Multi-Degree-of-Freedom Systems With Strongly Nonlinear Attachments,” J. Multi-Body Dyn., 226(2), pp. 122–146.
Gourc, E. , Michon, G. , Seguy, S. , and Berlioz, A. , 2015, “ Targeted Energy Transfer Under Harmonic Forcing With a Vibro-Impact Nonlinear Energy Sink: Analytical and Experimental Developments,” ASME J. Vib. Acoust., 137(3), p. 031008. [CrossRef]
Li, T. , Seguy, S. , and Berlioz, A. , 2016, “ Dynamics of Cubic and Vibro-Impact Nonlinear Energy Sink: Analytical, Numerical, and Experimental Analysis,” ASME J. Vib. Acoust., 138(3), p. 031010. [CrossRef]
AL-Shudeifat, M. A. , 2014, “ Amplitudes Decay in Different Kinds of Nonlinear Oscillators,” ASME J. Vib. Acoust., 137(3), p. 031012. [CrossRef]

Figures

Grahic Jump Location
Fig. 4

Numerical simulation results at x˙1(0)=0.2 m/s for the NESs: (a)–(c) type I NES, (d)–(f) the proposed NES at p=1, and (g)–(i) the proposed NES at p=2

Grahic Jump Location
Fig. 3

Optimization of the parameters β and λ in Eq. (3) of the proposed NESs for p=1 in (a) and p=2 in (b)

Grahic Jump Location
Fig. 5

Numerical simulation results at x˙1(0)=0.15 m/s for the NESs: (a)–(c) type I NES, (d)–(f) the proposed NES at p=1, and (g)–(i) the proposed NES at p=2

Grahic Jump Location
Fig. 6

Normalized-averaged effective damping versus initial velocities of the LO mass for type I NES and the proposed NESs at p=1 and p=2

Grahic Jump Location
Fig. 7

The restoring force of the proposed NES at p=1 for x˙1(0)=0.15 m/s in (a) and x˙1(0)=0.2 m/s in (b)

Grahic Jump Location
Fig. 2

Designs of the proposed NESs attached to the LO according to the nonlinear oscillator in Eq. (2)

Grahic Jump Location
Fig. 1

Nonlinear force produced by the oscillator in Eq. (2) for p=1, n=3, λ=3, β=1  N/m3, k=0.5  N/m3, x(0)=0, and x˙(0)=1 m/s, which is plotted versus the displacement in (a) and the time in (b) for viscous damping coefficient α=0 and in (c) and (d) for α=0.03

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In