Ruby,
L.
, 1996, “
Applications of the Mathieu Equation,” Am. J. Phys.,
64(1), pp. 39–44.

[CrossRef]
Li,
Y.
,
Fan,
S.
,
Guo,
Z.
,
Li,
J.
,
Cao,
L.
, and
Zhuang,
H.
, 2013, “
Mathieu Equation With Application to Analysis of Dynamic Characteristics of Resonant Inertial Sensors,” Commun. Nonlinear Sci. Numer. Simul.,
18(2), pp. 401–410.

[CrossRef]
Sofroniou,
A.
, and
Bishop,
S.
, 2014, “
Dynamics of a Parametrically Excited System With Two Forcing Terms,” Mathematics,
2(3), pp. 172–195.

[CrossRef]
Ramakrishnan,
V.
, and
Feeny,
B. F.
, 2012, “
Resonances of a Forced Mathieu Equation With Reference to Wind Turbine Blades,” ASME J. Vib. Acoust.,
134(6), p. 064501.

[CrossRef]
Inoue,
T.
,
Ishida,
Y.
, and
Kiyohara,
T.
, 2012, “
Nonlinear Vibration Analysis of the Wind Turbine Blade (Occurrence of the Superharmonic Resonance in the Out of Plane Vibration of the Elastic Blade),” ASME J. Vib. Acoust.,
134(3), p. 031009.

[CrossRef]
Rhoads,
J. F.
,
Miller,
N. J.
,
Shaw,
S. W.
, and
Feeny,
B. F.
, 2008, “
Mechanical Domain Parametric Amplification,” ASME J. Vib. Acoust.,
130(6), p. 061006.

[CrossRef]
Nayfeh,
A. H.
, and
Mook,
D. T.
, 2008, Nonlinear Oscillations,
Wiley,
New York.

Taylor,
J. H.
, and
Narendra,
K. S.
, 1969, “
Stability Regions for the Damped Mathieu Equation,” SIAM J. Appl. Math.,
17(2), pp. 343–352.

[CrossRef]
Younesian,
D.
,
Esmailzadeh,
E.
, and
Sedaghati,
R.
, 2005, “
Existence of Periodic Solutions for the Generalized Form of Mathieu Equation,” Nonlinear Dyn.,
39(4), pp. 335–348.

[CrossRef]
Thomson,
W.
, 1996, Theory of Vibration With Applications,
CRC Press,
Englewood Cliffs, NJ.

Nayfeh,
A. H.
, 2008, Perturbation Methods,
Wiley,
New York.

Benaroya,
H.
, and
Nagurka,
M. L.
, 2011, Mechanical Vibration: Analysis, Uncertainties, and Control,
CRC Press,
Englewood Cliffs, NJ.

Turrittin,
H.
, 1952, “
Asymptotic Expansions of Solutions of Systems of Ordinary Linear Differential Equations Containing a Parameter,” Contributions to the Theory of Nonlinear Oscillations, Vol.
II,
Princeton University Press,
Princeton, NJ, pp. 81–116.

Rand,
R. H.
, 1969, “
On the Stability of Hill's Equation With Four Independent Parameters,” ASME J. Appl. Mech.,
36(4), pp. 885–886.

[CrossRef]
Ishida,
Y.
,
Inoue,
T.
, and
Nakamura,
K.
, 2009, “
Vibration of a Wind Turbine Blade (Theoretical Analysis and Experiment Using a Single Rigid Blade Model),” J. Environ. Eng.,
4(2), pp. 443–454.

[CrossRef]
Ecker,
H.
, 2009, “
Parametric Excitation in Engineering Systems,” 20th International Congress of Mechanical Engineering (COBEM 2009), Gramado, Brazil, Nov. 15–20, pp. 15–20.

Ecker,
H.
, 2011, “
Beneficial Effects of Parametric Excitation in Rotor Systems,” IUTAM Symposium on Emerging Trends in Rotor Dynamics, New Delhi, India, Mar. 23–26, pp. 361–371.

Klotter,
K.
, and
Kotowski,
G.
, 1943, “
Über die Stabilität der Lösungen Hillscher Differentialgleichungen mit drei unabhängigen Parametern,” ZAMM,
23(3), pp. 149–155.

[CrossRef]
Stoker,
J. J.
, 1950, Nonlinear Vibrations in Mechanical and Electrical Systems, Vol.
2,
Interscience Publishers,
New York.

McLachlan,
N. W.
, 1961, Theory and Application of Mathieu Functions,
Dover,
New York.

Peterson,
A.
, and
Bibby,
M.
, 2013, Accurate Computation of Mathieu Functions,
Morgan & Claypool Publishers,
San Rafael, CA.

Hodge,
D.
, 1972, The Calculation of the Eigenvalues and Eigenfunctions of Mathieu's Equation, Vol. 1937,
National Aeronautics and Space Administration, Washington, DC.

Hagedorn,
P.
, 1988, Non-Linear Oscillations,
Clarendon Press,
Oxford, UK.

Hale,
J. K.
, 1963, Oscillations in Nonlinear Systems,
McGraw-Hill,
New York.

Hayashi,
C.
, 2014, Nonlinear Oscillations in Physical Systems,
Princeton University Press,
Princeton, NJ.

Schmidt,
G.
, and
Tondl,
A.
, 1986, Non-Linear Vibrations, Vol.
66,
Cambridge University Press,
Cambridge, UK.

Hartog,
J. P. D.
, 1985, Mechanical Vibrations,
Dover,
New York.

Magnus,
W.
, and
Winkler,
S.
, 1979, Hill's Equation,
Dover,
New York.

Whittaker,
E. T.
, 1913, “
On the General Solution of Mathieu's Equation,” Proc. Edinburgh Math. Soc.,
32, pp. 75–80.

[CrossRef]
Malasoma,
J.-M.
,
Lamarque,
C.-H.
, and
Jezequel,
L.
, 1994, “
Chaotic Behavior of a Parametrically Excited Nonlinear Mechanical System,” Nonlinear Dyn.,
5(2), pp. 153–160.

Coisson,
R.
,
Vernizzi,
G.
, and
Yang,
X.
, 2009, “
Mathieu Functions and Numerical Solutions of the Mathieu Equation,” IEEE International Workshop on Open-Source Software for Scientific Computation (OSSC), Guiyang, China, Sept. 18–20, pp. 3–10.

Insperger,
T.
, and
Stépán,
G.
, 2002, “
Stability Chart for the Delayed Mathieu Equation,” Proc. R. Soc. London, Ser. A,
458(2024), pp. 1989–1998.

[CrossRef]
Insperger,
T.
, and
Stépán,
G.
, 2003, “
Stability of the Damped Mathieu Equation With Time Delay,” ASME J. Dyn. Syst., Meas., Control,
125(2), pp. 166–171.

[CrossRef]