0
Research Papers

Dynamics of Cubic and Vibro-Impact Nonlinear Energy Sink: Analytical, Numerical, and Experimental Analysis

[+] Author and Article Information
Tao Li

ICA (Institut Clément Ader), CNRS,
INSA, ISAE, UPS, Mines Albi,
Université de Toulouse,
3 rue Caroline Aigle,
Toulouse F-31400, France
e-mail: tli@insa-toulouse.fr

Sébastien Seguy

ICA (Institut Clément Ader),
CNRS, INSA, ISAE, UPS, Mines Albi,
Université de Toulouse,
3 rue Caroline Aigle,
Toulouse F-31400, France
e-mail: sebastien.seguy@insa-toulouse.fr

Alain Berlioz

ICA (Institut Clément Ader), CNRS,
INSA, ISAE, UPS, Mines Albi,
Université de Toulouse,
3 rue Caroline Aigle,
Toulouse F-31400, France
e-mail: alain.berlioz@univ-tlse3.fr

Contributed by the Technical Committee on Vibration and Sound of ASME for publication in the JOURNAL OF VIBRATION AND ACOUSTICS. Manuscript received October 1, 2015; final manuscript received January 18, 2016; published online April 12, 2016. Assoc. Editor: Jeffrey F. Rhoads.

J. Vib. Acoust 138(3), 031010 (Apr 12, 2016) (9 pages) Paper No: VIB-15-1415; doi: 10.1115/1.4032725 History: Received October 01, 2015; Revised January 18, 2016

This paper is devoted to study and compare dynamics of primary linear oscillator (LO) coupled to cubic and vibro-impact (VI) nonlinear energy sink (NES) under transient and periodic forcing. The classic analytical procedure combining the approach of invariant manifold and multiple scales is extended from the analysis of steady-state resonance to other regimes, especially strongly modulated response (SMR). A general equation governing the variation of motion along the slow invariant manifold (SIM) is obtained. Numerical results show its convenience to explain the transition from steady-state response to SMR and the characteristics of SMR for periodic forcing. Targeted energy transfer (TET) under transient forcing can also be well understood. Experimental results from LO coupled to VI NES under periodic forcing confirm the existence of SMR and its properties (e.g., chaotic). They also verify the feasibility of the general equation to explain complicated case like SMR in experiments.

FIGURES IN THIS ARTICLE
<>
Copyright © 2016 by ASME
Your Session has timed out. Please sign back in to continue.

References

Lee, Y. , Vakakis, A. F. , Bergman, L. , McFarland, D. , Kerschen, G. , Nucera, F. , Tsakirtzis, S. , and Panagopoulos, P. , 2008, “ Passive Non-Linear Targeted Energy Transfer and Its Applications to Vibration Absorption: A Review,” Proc. Inst. Mech. Eng., Part K, 222(2), pp. 77–134.
Vakakis, A. F. , Gendelman, O. , Bergman, L. , McFarland, D. , Kerschen, G. , and Lee, Y. , 2008, Nonlinear Targeted Energy Transfer in Mechanical and Structural Systems, Vol. 156, Springer Science & Business Media, Berlin.
Gendelman, O. , Manevitch, L. , Vakakis, A. , and M'Closkey, R. , 2001, “ Energy Pumping in Nonlinear Mechanical Oscillators: Part I: Dynamics of the Underlying Hamiltonian Systems,” ASME J. Appl. Mech., 68(1), pp. 34–41. [CrossRef]
Vakakis, A. , and Gendelman, O. , 2001, “ Energy Pumping in Nonlinear Mechanical Oscillators: Part II: Resonance Capture,” ASME J. Appl. Mech., 68(1), pp. 42–48. [CrossRef]
Gendelman, O. V. , 2008, “ Targeted Energy Transfer in Systems With Non-Polynomial Nonlinearity,” J. Sound Vib., 315(3), pp. 732–745. [CrossRef]
Lamarque, C. , Gendelman, O. , Ture Savadkoohi, A. , and Etcheverria, E. , 2011, “ Targeted Energy Transfer in Mechanical Systems by Means of Non-Smooth Nonlinear Energy Sink,” Acta Mech., 221(1), pp. 175–200. [CrossRef]
Nucera, F. , Vakakis, A. , McFarland, D. , Bergman, L. , and Kerschen, G. , 2007, “ Targeted Energy Transfers in Vibro-Impact Oscillators for Seismic Mitigation,” Nonlinear Dyn., 50(3), pp. 651–677. [CrossRef]
Nucera, F. , Lo Iacono, F. , McFarland, D. , Bergman, L. , and Vakakis, A. , 2008, “ Application of Broadband Nonlinear Targeted Energy Transfers for Seismic Mitigation of a Shear Frame: Experimental Results,” J. Sound Vib., 313(1), pp. 57–76. [CrossRef]
Lee, Y. , Nucera, F. , Vakakis, A. , McFarland, D. , and Bergman, L. , 2009, “ Periodic Orbits, Damped Transitions and Targeted Energy Transfers in Oscillators With Vibro-Impact Attachments,” Physica D, 238(18), pp. 1868–1896. [CrossRef]
Gendelman, O. , 2012, “ Analytic Treatment of a System With a Vibro-Impact Nonlinear Energy Sink,” J. Sound Vib., 331(21), pp. 4599–4608. [CrossRef]
Gourc, E. , Michon, G. , Seguy, S. , and Berlioz, A. , 2015, “ Targeted Energy Transfer Under Harmonic Forcing With a Vibro-Impact Nonlinear Energy Sink: Analytical and Experimental Developments,” ASME J. Vib. Acoust., 137(3), p. 031008. [CrossRef]
Gendelman, O. , and Alloni, A. , 2015, “ Dynamics of Forced System With Vibro-Impact Energy Sink,” J. Sound Vib., 358, pp. 301–314. [CrossRef]
Gendelman, O. , Sigalov, G. , Manevitch, L. , Mane, M. , Vakakis, A. , and Bergman, L. , 2012, “ Dynamics of an Eccentric Rotational Nonlinear Energy Sink,” ASME J. Appl. Mech., 79(1), p. 011012. [CrossRef]
Sigalov, G. , Gendelman, O. , Al-Shudeifat, M. , Manevitch, L. , Vakakis, A. , and Bergman, L. , 2012, “ Resonance Captures and Targeted Energy Transfers in an Inertially-Coupled Rotational Nonlinear Energy Sink,” Nonlinear Dyn., 69(4), pp. 1693–1704. [CrossRef]
Cochelin, B. , Herzog, P. , and Mattei, P.-O. , 2006, “ Experimental Evidence of Energy Pumping in Acoustics,” C. R. Méc., 334(11), pp. 639–644. [CrossRef]
Bellet, R. , Cochelin, B. , Herzog, P. , and Mattei, P.-O. , 2010, “ Experimental Study of Targeted Energy Transfer From an Acoustic System to a Nonlinear Membrane Absorber,” J. Sound Vib., 329(14), pp. 2768–2791. [CrossRef]
Vaurigaud, B. , Savadkoohi, A. T. , and Lamarque, C.-H. , 2011, “ Targeted Energy Transfer With Parallel Nonlinear Energy Sinks. Part I: Design Theory and Numerical Results,” Nonlinear Dyn., 66(4), pp. 763–780. [CrossRef]
Savadkoohi, A. T. , Vaurigaud, B. , Lamarque, C.-H. , and Pernot, S. , 2012, “ Targeted Energy Transfer With Parallel Nonlinear Energy Sinks, Part II: Theory and Experiments,” Nonlinear Dyn., 67(1), pp. 37–46. [CrossRef]
Gendelman, O. , 2004, “ Bifurcations of Nonlinear Normal Modes of Linear Oscillator With Strongly Nonlinear Damped Attachment,” Nonlinear Dyn., 37(2), pp. 115–128. [CrossRef]
Gendelman, O. , Starosvetsky, Y. , and Feldman, M. , 2008, “ Attractors of Harmonically Forced Linear Oscillator With Attached Nonlinear Energy Sink. I: Description of Response Regimes,” Nonlinear Dyn., 51(1), pp. 31–46.
Starosvetsky, Y. , and Gendelman, O. , 2008, “ Strongly Modulated Response in Forced 2DOF Oscillatory System With Essential Mass and Potential Asymmetry,” Physica D, 237(13), pp. 1719–1733. [CrossRef]
Gourc, E. , Michon, G. , Seguy, S. , and Berlioz, A. , 2014, “ Experimental Investigation and Design Optimization of Targeted Energy Transfer Under Periodic Forcing,” ASME J. Vib. Acoust., 136(2), p. 021021. [CrossRef]
Gourc, E. , Seguy, S. , Michon, G. , Berlioz, A. , and Mann, B. , 2015, “ Quenching Chatter Instability in Turning Process With a Vibro-Impact Nonlinear Energy Sink,” J. Sound Vib., 355, pp. 392–406. [CrossRef]
Pilipchuk, V. , 2002, “ Some Remarks on Non-Smooth Transformations of Space and Time for Vibrating Systems With Rigid Barriers,” J. Appl. Math. Mech., 66(1), pp. 31–37. [CrossRef]
Gourc, E. , 2013, “ Etude du Contrôle Passif par Pompage Énergétique sous Sollicitation Harmonique: Analyses Théoriques et Expérimentales,” Ph.D. thesis, INSA, Toulouse, France.
Poularikas, A. D. , 1998, Handbook of Formulas and Tables for Signal Processing, Vol. 13, CRC Press, Boca Raton.

Figures

Grahic Jump Location
Fig. 1

Representation of the LO coupled to a cubic NES

Grahic Jump Location
Fig. 2

SIM of cubic NES: two stable branches in thin line and one unstable branch in thick line

Grahic Jump Location
Fig. 3

Representation of the LO coupled to a VI NES

Grahic Jump Location
Fig. 4

Representation of the nonsmooth functions Π(z) and M(z)

Grahic Jump Location
Fig. 5

SIM of VI NES: one stable branch in bold line and two unstable branches in fine line

Grahic Jump Location
Fig. 6

Cubic NES under transient forcing with parameters K = 800, G = 0 and initial conditions x0=0.02, x˙0=0, y0=0, and y˙0=0. (a) Displacement of LO with cubic NES. (b) Displacement of cubic NES. (c) Relative displacement between LO and cubic NES. (d) SIM and trace between LO and cubic NES: black curve represents projected motion.

Grahic Jump Location
Fig. 7

Cubic NES under periodic forcing with parameters K = 4500, G = 0.02 and initial conditions x0=0, x˙0=0, y0=0, and ∈y˙0=0. (a) Displacement of the center of gravity. (b) Displacement of cubic NES. (c) Relative displacement between LO and cubic NES. (d) SIM and trace between LO and cubic NES: black curve represents projected motion.

Grahic Jump Location
Fig. 8

Cubic NES under periodic forcing with parameters K = 4500, G = 0.02 and initial conditions x0=0, x˙0=0, y0=0, and y˙0=0. (a) Envelope of v and y. (b) Phase difference between v and y. (c) Instantaneous frequency of v (HT). (d) Instantaneous frequency of y (HT). (e) WT spectrum of v. (f) WT spectrum of y.

Grahic Jump Location
Fig. 9

VI NES under transient forcing with parameters B = 0.04, G = 0 and initial conditions x0=0.02, x˙0=0, y0=0.06, and y˙0=0. (a) Displacement of LO. (b) Displacement of VI NES. (c) Relative displacement between LO and VI NES. (d) SIM and trace between LO and VI NES.

Grahic Jump Location
Fig. 10

VI NES under periodic forcing with parameters B = 0.04, G = 0 and initial conditions x0=0.02, x˙0=0, y0=0.06, and y˙0=0. (a) Displacement of the center of gravity. (b) Displacement of VI NES. (c) Relative displacement between LO and VI NES. (d) SIM and trace between LO and VI NES.

Grahic Jump Location
Fig. 11

VI NES under periodic forcing with parameters B = 0.04, G = 0, and σ = 0 and initial conditions x0=0.02, x˙0=0, y0=0.06, and y˙0=0. (a) Envelope of displacement of v and y. (b) Phase difference between v and y. (c) Instantaneous frequency of v (HT). (d) Instantaneous frequency of y (HT). (e) WT spectrum of v. (f) WT spectrum of y.

Grahic Jump Location
Fig. 12

Picture of the experimental setup: (a) global view of the system and (b) detailed view of the VI NES

Grahic Jump Location
Fig. 13

Case of chaotic SMR: (a) acceleration of LO, (b) acceleration of LO in line with crosses, displacement (mm) of LO in line with the largest amplitude, and displacement (mm) of forcing in line with the smallest amplitude, and (c) enlarged view

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In