0
Research Papers

Propagation of In-Plane Shear Waves in Magnetically Affected Highly Conductive Nanofilms by Considering Both Surface and Nonlocality Effects

[+] Author and Article Information
Keivan Kiani

Department of Civil Engineering,
K. N. Toosi University of Technology,
Valiasr Avenue,
P.O. Box 15875-4416,
Tehran 19967-15433, Iran
e-mails: k_kiani@kntu.ac.ir;
keivankiani@yahoo.com

Contributed by the Technical Committee on Vibration and Sound of ASME for publication in the JOURNAL OF VIBRATION AND ACOUSTICS. Manuscript received October 18, 2014; final manuscript received November 14, 2015; published online March 21, 2016. Assoc. Editor: Mahmoud Hussein.

J. Vib. Acoust 138(3), 031001 (Mar 21, 2016) (9 pages) Paper No: VIB-14-1397; doi: 10.1115/1.4032716 History: Received October 18, 2014; Revised November 14, 2015

To study the size and surface effects on characteristics of in-plane shear waves in magnetically affected nanofilms, a novel model is developed. Using nonlocal and surface continuum theories, the governing equations are established and appropriate boundary conditions are imposed at the bottom and top surfaces of the nanofilm. The dispersion relations associated with symmetric and asymmetric modes are obtained. The effects of the surface energy, small-scale parameter, nanofilm's thickness, and magnetic field strength on dispersion curves are addressed. The limitations of the classical theory of elasticity are discussed. The obtained results show that the phase velocity of the propagated in-plane shear waves magnifies by an increase of the thickness as well as magnetic field strength. However, the phase velocity commonly decreases as the effect of the surface energy or nonlocality increases. Such a fact is more obvious for higher modes of vibration. Generally, the cutoff frequency reaches a lower value as the nanofilm's thickness reduces or the small-scale parameter increases. Additionally, variation of the magnetic field strength has fairly no influence on the cutoff frequency.

Copyright © 2016 by ASME
Your Session has timed out. Please sign back in to continue.

References

Mitsuishi, M. , Zhao, F. , Kim, Y. , Watanabe, A. , and Miyashita, T. , 2008, “ Preparation of Ultrathin Silsesquioxane Nanofilms Via Polymer Langmuir-Blodgett Films,” Chem. Mater., 20(13), pp. 4310–4316. [CrossRef]
Lee, D. K. , Kim, Y. H. , Kim, C. W. , Cha, H. G. , and Kang, Y. S. , 2007, “ Vast Magnetic Monolayer Film With Surfactant-Stabilized Fe3O4 Nanoparticles Using Langmuir-Blodgett Technique,” J. Phys. Chem. B, 111(31), pp. 9288–9293. [CrossRef] [PubMed]
Chang, C. Y. , Chou, C. T. , Lee, Y. J. , Chen, M. J. , and Tsai, F. Y. , 2009, “ Thin-Film Encapsulation of Polymer-Based Bulk-Heterojunction Photovoltaic Cells by Atomic Layer Deposition,” Org. Electron., 10(7), pp. 1300–1306. [CrossRef]
Ge, C. , Wang, A. , and Yin, H. , 2012, “ Encapsulation of TiO2 Particles With Polystyrene and Polymethyl Acrylic Acid and the Pigmentary Performances,” J. Ind. Eng. Chem., 18(4), pp. 1384–1390. [CrossRef]
Zhou, D. , Jian, G. , Zheng, Y. , and Shi, F. , 2011, “ Multiferroic Nanofilm With Bilayer of Pb(Zr0.52Ti0.48)O3 and CoFe2O4 Prepared by Electrophoretic Deposition,” Advances and Applications in Electroceramics, Vol. 226, K. M. Nair , Q. Jia , and S. Priya , eds., Wiley, Hoboken, NJ, pp. 241–248.
Chandrasekharan, N. , and Kamat, P. V. , 2001, “ Assembling Gold Nanoparticles as Nanostructured Films Using an Electrophoretic Approach,” Nano Lett., 1(2), pp. 67–70. [CrossRef]
Ai, H. , Meng, H. , Ichinose, I. , Jones, S. A. , Mills, D. K. , Lvov, Y. M. , and Qiao, X. , 2003, “ Biocompatibility of Layer-By-Layer Self-Assembled Nanofilm on Silicone Rubber for Neurons,” J. Neurosci. Methods, 128(1–2), pp. 1–8. [CrossRef] [PubMed]
Ma, R. , Sasaki, T. , and Bando, Y. , 2004, “ Layer-By-Layer Assembled Multilayer Films of Titanate Nanotubes, Ag-or Au-Loaded Nanotubes, and Nanotubes/Nanosheets With Polycations,” J. Am. Chem. Soc., 126(33), pp. 10382–10388. [CrossRef] [PubMed]
Wittmer, C. R. , Phelps, J. A. , Lepus, C. M. , Saltzman, W. M. , Harding, M. J. , and Van Tassel, P. R. , 2008, “ Multilayer Nanofilms as Substrates for Hepatocellular Applications,” Biomaterials, 29(30), pp. 4082–4090. [CrossRef] [PubMed]
Sinibaldi, E. , Pensabene, V. , Taccola, S. , Palagi, S. , Menciassi, A. , Dario, P. , and Mattoli, V. , 2010, “ Magnetic Nanofilms for Biomedical Applications,” ASME J. Nanotechnol. Eng. Med., 1(2), p. 021008. [CrossRef]
Domansky, K. , Liu, J. , Wang, L. Q. , Engelhard, M. H. , and Baskaran, S. , 2001, “ Chemical Sensors Based on Dielectric Response of Functionalized Mesoporous Silica Films,” J. Mater. Res., 16(10), pp. 2810–2816. [CrossRef]
Liu, X. , Lu, X. , Chuai, R. , Shi, C. , and Suo, C. , 2009, “ Polysilicon Nanofilm Pressure Sensor,” Sens. Actuators A, 154(1), pp. 42–45. [CrossRef]
Kumar, V. , Bergman, A. A. , Gorokhovsky, A. A. , and Zaitsev, A. M. , 2011, “ Formation of Carbon Nanofilms on Diamond for All-Carbon Based Temperature and Chemical Sensor Application,” Carbon, 49(4), pp. 1385–1394. [CrossRef]
Tsai, C. Y. , Tam, S. Y. , Lu, Y. , and Brinker, C. J. , 2000, “ Dual-Layer Asymmetric Microporous Silica Membranes,” J. Membr. Sci., 169(2), pp. 255–268. [CrossRef]
McKenzie, K. J. , Marken, F. , Hyde, M. , and Compton, R. G. , 2002, “ Nanoporous Iron Oxide Membranes: Layer-by-Layer Deposition and Electrochemical Characterisation of Processes Within Nanopores,” New J. Chem., 26(5), pp. 625–629. [CrossRef]
Bera, M. , and Ray, M. , 2012, “ Role of Waveguide Resonance in Coupled Plasmonic Structures Using Bimetallic Nanofilms,” Opt. Eng., 51(10), p. 103801. [CrossRef]
Szendro, I. , Erdélyi, K. , Puskas, Z. , Fabian, M. , Adanyi, N. , and Somogyi, K. , 2012, “ Development and Experiments With Conductive Oxide Nanofilm Coated Planar Waveguide Sensors,” Nanopages, 7(1), pp. 17–24. [CrossRef]
Yang, P. , Wirnsberger, G. , Huang, H. C. , Cordero, S. R. , McGehee, M. D. , Scott, B. , Deng, T. , Whitesides, G. M. , Chmelka, B. F. , Buratto, S. K. , and Stucky, G. D. , 2000, “ Mirrorless Lasing From Mesostructured Waveguides Patterned by Soft Lithography,” Science, 287(5452), pp. 465–467. [CrossRef] [PubMed]
Favazza, C. , Kalyanaraman, R. , and Sureshkumar, R. , 2006, “ Robust Nanopatterning by Laser-Induced Dewetting of Metal Nanofilms,” Nanotechnology, 17(16), p. 4229. [CrossRef] [PubMed]
Kulagin, V. V. , Cherepenin, V. A. , Hur, M. S. , and Suk, H. , 2007, “ Theoretical Investigation of Controlled Generation of a Dense Attosecond Relativistic Electron Bunch From the Interaction of an Ultrashort Laser Pulse With a Nanofilm,” Phys. Rev. Lett., 99(12), p. 124801. [CrossRef] [PubMed]
Gleskova, H. , and Wagner, S. , 2001, “ Electron Mobility in Amorphous Silicon Thin-Film Transistors Under Compressive Strain,” Appl. Phys. Lett., 79(20), pp. 3347–3349. [CrossRef]
Guisbiers, G. , and Buchaillot, L. , 2008, “ Thermo-Opto-Mechanical Properties of AlN Nanostructures: A Promising Material for NEMS Applications,” J. Phys. D, 41(17), p. 172001. [CrossRef]
Sinha, N. , Wabiszewski, G. E. , Mahameed, R. , Felmetsger, V. V. , Tanner, S. M. , Carpick, R. W. , and Piazza, G. , 2009, “ Ultra Thin AlN Piezoelectric Nano-Actuators,” International Solid-State Sensors, Actuators and Microsystems Conference, (TRANSDUCERS 2009), Denver, CO, June 21–25, pp. 469–472.
Guo, J. G. , and Zhao, Y. P. , 2005, “ The Size-Dependent Elastic Properties of Nanofilms With Surface Effects,” J. Appl. Phys., 98(7), p. 074306. [CrossRef]
Fedorchenko, A. I. , Wang, A. B. , and Cheng, H. H. , 2009, “ Thickness Dependence of Nanofilm Elastic Modulus,” Appl. Phys. Lett., 94(15), p. 152111. [CrossRef]
Cao, G. , and Chen, X. , 2007, “ Energy Analysis of Size-Dependent Elastic Properties of ZnO Nanofilms Using Atomistic Simulations,” Phys. Rev. B, 76(16), p. 165407. [CrossRef]
Cuenot, S. , Frétigny, C. , Demoustier-Champagne, S. , and Nysten, B. , 2004, “ Surface Tension Effect on the Mechanical Properties of Nanomaterials Measured by Atomic Force Microscopy,” Phys. Rev. B, 69(16), p. 165410. [CrossRef]
Gurtin, M. E. , and Murdoch, A. I. , 1976, “ Effect of Surface Stress on Wave Propagation in Solids,” J. Appl. Phys., 47(10), pp. 4414–4421. [CrossRef]
Gurtin, M. E. , and Murdoch, A. I. , 1978, “ Surface Stress in Solids,” Int. J. Solids Struct., 14(6), pp. 431–440. [CrossRef]
Lu, P. , He, L. H. , Lee, H. P. , and Lu, C. , 2006, “ Thin Plate Theory Including Surface Effects,” Int. J. Solids Struct., 43(16), pp. 4631–4647. [CrossRef]
Lim, C. W. , and He, L. H. , 2004, “ Size-Dependent Nonlinear Response of Thin Elastic Films With Nano-Scale Thickness,” Int. J. Mech. Sci., 46(11), pp. 1715–1726. [CrossRef]
Huang, D. W. , 2008, “ Size-Dependent Response of Ultra-Thin Films With Surface Effects,” Int. J. Solids Struct., 45(2), pp. 568–579. [CrossRef]
Wang, K. F. , and Wang, B. L. , 2011, “ Vibration of Nanoscale Plates With Surface Energy Via Nonlocal Elasticity,” Phys. E, 44(2), pp. 448–453. [CrossRef]
Assadi, A. , Farshi, B. , and Alinia-Ziazi, A. , 2010, “ Size Dependent Dynamic Analysis of Nanoplates,” J. Appl. Phys., 107(12), p. 124310. [CrossRef]
Zhang, J. , and Wang, C. , 2012, “ Vibrating Piezoelectric Nanofilms as Sandwich Nanoplates,” J. Appl. Phys., 111(9), p. 094303. [CrossRef]
Sheng, H. , Li, H. , Lu, P. , and Xu, H. , 2010, “ Free Vibration Analysis for Micro-Structures Used in MEMS Considering Surface Effects,” J. Sound Vib., 329(2), pp. 236–246. [CrossRef]
Narendar, S. , and Gopalakrishnan, S. , 2012, “ Study of Terahertz Wave Propagation Properties in Nanoplates With Surface and Small-Scale Effects,” Int. J. Mech. Sci., 64(1), pp. 221–231. [CrossRef]
Zhang, C. , Chenb, W. , and Zhang, Ch. , 2012, “ On Propagation of Anti-Plane Shear Waves in Piezoelectric Plates With Surface Effect,” Phys. Lett. A, 376(45), pp. 3281–3286. [CrossRef]
Liu, H. , Liu, H. , and Yang, J. L. , 2013, “ Surface Effects on the Propagation of Shear Horizontal Waves in Thin Films With Nano-Scale Thickness,” Phys. E, 49, pp. 13–17. [CrossRef]
Zhang, L. L. , Liu, J. X. , Fang, X. Q. , and Nie, G. Q. , 2014, “ Effects of Surface Piezoelectricity and Nonlocal Scale on Wave Propagation in Piezoelectric Nanoplates,” Eur. J. Mech.-A/Solids, 46, pp. 22–29. [CrossRef]
Zhang, L. L. , Liu, J. X. , Fang, X. Q. , and Nie, G. Q. , 2014, “ Surface Effect on Size-Dependent Wave Propagation in Nanoplates Via Nonlocal Elasticity,” Philos. Mag., 94(18), pp. 2009–2020. [CrossRef]
Eringen, A. C. , and Edelen, D. G. B. , 1972, “ On Nonlocal Elasticity,” Int. J. Eng. Sci., 10(3), pp. 233–248. [CrossRef]
Eringen, A. C. , 1983, “ On Differential Equations of Nonlocal Elasticity and Solutions of Screw Dislocation and Surface Waves,” J. Appl. Phys., 54(9), pp. 4703–4710. [CrossRef]
Eringen, A. C. , 2002, Nonlocal Continuum Field Theories, Springer, New York.
Kiani, K. , 2014, “ Longitudinally Varying Magnetic Field Influenced Transverse Vibration of Embedded Double-Walled Carbon Nanotubes,” Int. J. Mech. Sci., 87, pp. 179–199. [CrossRef]
Kiani, K. , 2015, “ Elastic Wave Propagation in Magnetically Affected Double-Walled Carbon Nanotubes,” Meccanica, 50(4), pp. 1003–1026. [CrossRef]
Narendar, S. , Gupta, S. S. , and Gopalakrishnan, S. , 2012, “ Wave Propagation in Single-Walled Carbon Nanotube Under Longitudinal Magnetic Field Using Nonlocal Euler-Bernoulli Beam Theory,” Appl. Math. Modell., 36(9), pp. 4529–4538. [CrossRef]
Wang, X. , Shen, J. X. , Liu, Y. , Shen, G. G. , and Lu, G. , 2012, “ Rigorous Van der Waals Effect on Vibration Characteristics of Multi-Walled Carbon Nanotubes Under a Transverse Magnetic Field,” Appl. Math. Modell., 36(2), pp. 648–656. [CrossRef]
Wang, H. , Dong, K. , Men, F. , Yan, Y. J. , and Wang, X. , 2010, “ Influences of Longitudinal Magnetic Field on Wave Propagation in Carbon Nanotubes Embedded in Elastic Matrix,” Appl. Math. Modell., 34(4), pp. 878–889. [CrossRef]
Kiani, K. , 2012, “ Magneto-Elasto-Dynamic Analysis of an Elastically Confined Conducting Nanowire Due to an Axial Magnetic Shock,” Phys. Lett. A, 376(20), pp. 1679–1685. [CrossRef]
Kiani, K. , 2012, “ Magneto-Thermo-Elastic Fields Caused by an Unsteady Longitudinal Magnetic Field in a Conducting Nanowire Accounting for Eddy-Current Loss,” Mater. Chem. Phys., 136(2–3), pp. 589–598. [CrossRef]
Kiani, K. , 2014, “ Forced Vibrations of a Current-Carrying Nanowire in a Longitudinal Magnetic Field Accounting for Both Surface Energy and Size Effects,” Phys. E, 63, pp. 27–35. [CrossRef]
Kiani, K. , 2015, “ Vibrations and Instability of Pretensioned Current-Carrying Nanowires Acted Upon by a Suddenly Applied Three-Dimensional Magnetic Field,” Mater. Chem. Phys., 162, pp. 531–541. [CrossRef]
Kiani, K. , 2014, “ Free Vibration of Conducting Nanoplates Exposed to Unidirectional In-Plane Magnetic Fields Using Nonlocal Shear Deformable Plate Theories,” Phys. E, 57, pp. 179–192. [CrossRef]
Ke, L. L. , Wang, Y. S. , Yang, J. , and Kitipornchai, S. , 2014, “ Free Vibration of Size-Dependent Magneto-Electro-Elastic Nanoplates Based on the Nonlocal Theory,” Acta Mech. Sin., 30(4), pp. 516–525. [CrossRef]
Li, Y. S. , Cai, Z. Y. , and Shi, S. Y. , 2014, “ Buckling and Free Vibration of Magnetoelectroelastic Nanoplate Based on Nonlocal Theory,” Compos. Struct., 111, pp. 522–529. [CrossRef]
Allegri, G. , Fabrizio, S. , Rajib, C. , and Sondipon, A. , 2013, “ Wave Propagation in Periodically Supported Nanoribbons: A Nonlocal Elasticity Approach,” ASME J. Vib. Acoust., 135(4), p. 041017. [CrossRef]
Shi, J. X. , Ni, Q. Q. , Lei, X. W. , and Natsuki, T. , 2012, “ Nonlocal Vibration of Embedded Double-Layer Graphene Nanoribbons in In-Phase and Anti-Phase Modes,” Phys. E, 44(7–8), pp. 1136–1141. [CrossRef]
Kiani, K. , 2015, “ Characteristics of Shear Horizontal Waves in Magnetically Affected Ultra-Thin Films Accounting for Surface Effect,” Wave Motion, 53, pp. 20–27. [CrossRef]
Duan, W. H. , Wang, C. M. , and Zhang, Y. Y. , 2007, “ Calibration of Nonlocal Scaling Effect Parameter for Free Vibration of Carbon Nanotubes by Molecular Dynamics,” J. Appl. Phys., 101(2), p. 024305. [CrossRef]
Wang, C. M. , Zhang, Z. , Challamel, N. , and Duan, W. H. , 2013, “ Calibration of Eringen's Small Length Scale Coefficient for Initially Stressed Vibrating Nonlocal Euler Beams Based on Microstructured Beam Model,” J. Phys. D, 46(34), p. 345501. [CrossRef]

Figures

Grahic Jump Location
Fig. 1

A highly conducting nanofilm in the presence of an in-plane magnetic field acted upon by in-plane shear waves

Grahic Jump Location
Fig. 2

Plots of dispersion curves in a special case: (a) symmetric modes and (b) asymmetric modes ( Liu et al. [39] and (—) present study; H = 0 and e0a = 0)

Grahic Jump Location
Fig. 3

Effect of the small-scale parameter on the dispersion curves: (a) symmetric modes and (b) asymmetric modes ( ) e0a = 0 nm, e0a = 1 nm, ( ) e0a = 1.5 nm, and (– – –) CCT; H¯=0.5 and h = 60 nm)

Grahic Jump Location
Fig. 4

Effect of the magnetic field strength on the dispersion curves: (a) symmetric modes and (b) asymmetric modes ( ) NSCT and H¯=0.2, NSCT and H¯=0.4, NSCT and H¯=0.8, CCT and H¯=0.2, CCT and H¯=0.4, and CCT and H¯=0.8 ; h = 30 nm and e0a = 1 nm)

Grahic Jump Location
Fig. 5

Effect of the nanofilm's thickness on the dispersion curves: (a) symmetric modes and (b) asymmetric modes ((– – –) CCT, h = 30 nm, h = 60 nm, and h = 90 nm; H¯=0.5 and e0a = 1 nm)

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In